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Generalized Wigner–Smith theory for
perturbations at resonant exceptional
and diabolic point degeneracies:
Supplementary material

1. REVIEW OF LINEAR ALGEBRA CONCEPTS

Here we review concepts from linear algebra that are most pertinent to the main text, focusing
on eigenvalues, algebraic and geometric multiplicities, and the Jordan normal form. A more
in-depth treatment can be found, for example, in Ref. [1].

The eigenvalues of a matrix M are the roots of its characteristic equation det(M − λI) = 0. If
all the eigenvalues of M are distinct, then M is diagonalizable: there exists an invertible matrix P
such that D = P−1MP is diagonal with the eigenvalues of M on the diagonal. The columns of
P are the corresponding eigenvectors, which can be found by solving (M − λI)v = 0 for each
eigenvalue λ.

If the characteristic equation has repeated roots, M may or may not be diagonalizable. The
number of times an eigenvalue occurs as a root of the characteristic polynomial is called its
algebraic multiplicity (AM). The number of linearly independent eigenvectors associated with that
eigenvalue is called its geometric multiplicity (GM) and satisfies 1 ≤ GM ≤ AM. When GM = AM,
there exists a full set of independent eigenvectors and M can be diagonalized. If GM < AM, no
such set of eigenvectors exists and M is termed defective. Even if M is defective, it can always
be brought to Jordan normal form, which can be thought of as almost diagonal. Specifically, there
exists an invertible matrix Q such that J = Q−1MQ is block diagonal, with each block (called a
Jordan block) containing repeated eigenvalues of M on its diagonal and 1s on its superdiagonal.
Each eigenvector of M can be associated with a Jordan block, meaning the number of Jordan
blocks equals the geometric multiplicity.

Suppose, for example, that M ∈ C5×5 has a five-fold repeated eigenvalue λ with AM = 5 and
GM = 2. In this case, M has two linearly independent eigenvectors, so J is a 5 × 5 matrix with
two Jordan blocks. The sizes of the blocks must sum to 5, so the possible configurations are 2 + 3
or 1 + 4. These correspond to Jordan normal forms of the form

λ 1 0 0 0

0 λ 0 0 0

0 0 λ 1 0

0 0 0 λ 1

0 0 0 0 λ


,



λ 0 0 0 0

0 λ 1 0 0

0 0 λ 1 0

0 0 0 λ 1

0 0 0 0 λ


. (S1)

Which of these forms actually occurs is not determined by the GM alone, but depends on the
precise structure of M. In the second example above, the first Jordan block has size 1, so it has no
superdiagonal. In fact, when GM = AM, all Jordan blocks are of size 1, meaning J is a diagonal
matrix. In this case, M is not defective and the Jordan normal form is equivalent to the usual
diagonal form D.

2. PROOF OF DETERMINANT IDENTITY

Here we present a short proof of Eq. (4), i.e.,

det(ωIN − H(α)) = det(S−1(ω, α))det(ωIN − H(α)− iWW†). (S2)

from the main text.



Consider a matrix M with block structure

M =

A B

C D

 , (S3)

where A ∈ CN×N , B ∈ CN×M, C ∈ CM×N , and D ∈ CM×M. If A and D are invertible then it is
well known that [2]

det(M) = det(A)det(D − CA−1B) = det(D)det(A − BD−1C). (S4)

Setting A = IN , B = RW, C = iW†, and D = IM, where R = (ωIN − H(α))−1, we find

det(IM − iRWW†) = det(IN − iW†RW) = det(S), (S5)

where the final equality follows from the definition of S. Note now that

det(IM − iRWW†) = det(R)det(R−1 − iWW†) =
det(ωIN − H(α)− iWW†)

det(ωIN − H(α))
. (S6)

Substituting Eq. (S6) back into Eq. (S5) and rearranging yields Eq. (S2).

3. PROOF OF VANISHING LIMIT

In this section, we justify the limit

lim
ω→ωp

(ω − ωp)
N
(

1
g

∂g
∂α

)∣∣∣∣
α=α0

= 0, (S7)

from the main text where g = det(ωIN − H(α)− iWW†).
Recall first that H(α0) has the repeated eigenvalue ωp. Note next that WW† is, by construction,

Hermitian and positive semi-definite. Provided that W is not the zero matrix, WW† must possess
at least one non-zero eigenvalue, implying tr(WW†) ̸= 0. It follows that

tr(ωIN − H(α0)− iWW†) = N(ω − ωp)− itr(WW†) (S8)

is non-zero at ω = ωp. Since the trace of a matrix is equal to the sum of its eigenvalues, it hence
follows that ωpIN − H(α0)− iWW† possesses at least one non-zero eigenvalue. In other words,
the addition of −iWW† necessarily shifts at least one of the eigenvalues of H(α0) away from ωp.
Consequently, factorization of g(ω, α0) will contain the factor (ω − ωp) with multiplicity strictly
less than N. We can therefore write g(ω, α0) = (ω − ωp)N−kh(ω) for some integer 1 ≤ k ≤ N
where h is a polynomial necessarily satisfying h(ωp) ̸= 0. Since ∂g/∂α is finite at ωp, the original
limit can therefore be easily evaluated as

lim
ω→ωp

(ω − ωp)
N
(

1
g

∂g
∂α

)∣∣∣∣
α=α0

= lim
ω→ωp

(ω − ωp)
k 1

h
∂g
∂α

∣∣∣∣
α=α0

= 0, (S9)

as required.

4. EXAMPLE OF NO POLE MIXING AT A NON-TRIVIAL DIABOLIC POINT

In this section we present an example where the eigenvalues of H do not mix among the eigen-
values of S, even though WW† is not diagonal. For this section we write S = I − i W†RW,
R = QPQ−1, and P = diag(p1, . . . , pN), where the diagonal entries pi = 1/(ω − ωp,i) contain
the poles and Q diagonalizes H(α0). Note that although the eigenfrequencies ωp,i coincide at
α = α0, their derivatives need not.

Take for example

Q =


1 1 1

1 1 0

1 0 0

 , W =


1 0 −1 1

1 0 1 1

0 1 0 0

 . (S10)
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A direct calculation gives

S = I − i



2p2 2p1 − 2p2 2p2 − 2p3 2p2

0 p1 0 0

0 0 2p3 0

2p2 2p1 − 2p2 2p2 − 2p3 2p2


, (S11)

which has eigenvalues 1, 1 − ip1, 1 − 4ip2, 1 − 3ip3. Evidently, each eigenvalue of S that contains
a pole depends on exactly one eigenvalue of H, so there is no mixing of the eigenvalues of H into
different eigenvalues of S. This example, however, differs to the case presented in the main text
since

WW† =


3 1 0

1 3 0

0 0 1

 , (S12)

which is neither diagonal nor has equal diagonal entries. We stress that this example is not
particularly special and many similar constructions can be produced.
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