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1 Introduction

In our article we discuss the use of transformation optics for design of high order exceptional points in two-
dimensional (2D) nanophotonic systems. Here we provide further mathematical details of our approach. In
Section 2 we first derive the standard resonance condition for surface plasmon polariton (SPP) modes in a
planar slab-like geometry. An alternative derivation is presented in Section 3 and extended to higher order
geometries. Section 4.1 details how this result can be in turn used to identify second order exceptional
points in an asymmetric core-shell nanowire structure. Sections 4.2 and 4.3 apply similar principles to
study third and fourth order exceptional points in a coupled core-shell/monomer nanowire system and
core-shell dimer system respectively.

2 Three layer resonance condition

We consider the geometry shown in Figure 1(a) comprising of three regions of relative electric permittivity
ϵ1, ϵ2 and ϵ3 respectively, separated by interfaces at x = x0 and x = x0 + d, and illuminated by a periodic
array of electric line dipoles each with moment ∆. The line dipoles are assumed to lie in the left-most
medium and located at rm = (xm, ym) = (0, 2mπ) for m ∈ Z. Our choice of illumination is for later
convenience when performing calculations in the transformed coordinate system, however, this choice does
not affect the resonance condition.

We will assume that the quasi-static approximation holds, such that the electric potential ϕ(r) induced
in the systems from the line dipoles satisfies Laplace’s equation

∇2ϕ(r) = − 1

2πϵ0

m=+∞∑
m=−∞

∆ · (r− rm)

|r− rm|2
= ϕ0(r), (1)

where r = (x, y) is the 2D position vector and ϕ0(r) is the source potential. The problem of determining
the induced potential is easily solved in the Fourier domain [1, 2]. In an arbitrary plane x the source
potential can be written in the form:

ϕ0(r) =
1

2π

∫ ∞

−∞
Φ0(k, x)e

ikydk (2)
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Figure 1: Schematics of 2D planar multilayer geometries considered comprising of (a) 3, (b) 4 and (c) 5 distinct material
regions.

where

Φ0(k, x) = − 1

2πϵ0

m=+∞∑
m=−∞

∫ ∞

−∞

∆ · (r− rm)

|r− rm|2
e−ikydy (3)

= − 1

2πϵ0

m=+∞∑
m=−∞

e−ikym

∫
∆ · r
|r|2

e−ikydy (4)

=

{
A+(k)e

−|k|x if x > 0

A−(k)e
|k|x if x < 0

(5)

where

A±(k) = − 1

2ϵ0

m=+∞∑
m=−∞

e−ikym(±∆x + i sign[k]∆y) (6)

= − 1

2ϵ0

n=+∞∑
n=−∞

(±∆x + isign[k]∆y)δ(k − n) (7)

and δ[k] denotes the Dirac delta function. From Equations (5) and (7), we note that the Fourier spectrum
of the source potential is a Dirac comb. Accordingly, only modes associated with integer spatial frequencies
n can be excited by the chosen source distribution.

Each Fourier component of the source potential Φ0(k) induces a potential across all space which can be
expressed in the form

Φ(k, x) =


B(k) eiky+|k|x for x ≤ x0

C(k) eiky−|k|x +D(k) eiky+|k|x for x0 ≤ x ≤ x0 + d

E(k) eiky−|k|x for x0 + d ≤ x

(8)

where as a consequence of the Dirac delta functions in Equation (7) k = n (n ∈ Z). Note the total potential
in the Fourier domain is then Φ0(k, x) + Φ(k, x).

To find the resonance condition of the sheet geometry, we follow the standard procedure and enforce
continuity of the tangential (normal) components of the electric (displacement) field E (D). Noting then
that E(r) = −∇ϕ(r) and D(r) = ϵE(r) respectively, for a single Fourier component we have at x = x0

(assuming x0 > 0)

A+(k)e
−|k|x0 + B(k)e|k|x0 = C(k)e−|k|x0 +D(k)e|k|x0 (9)

ϵ1
[
A+(k)e

−|k|x0 − B(k)e|k|x0
]

= ϵ2
[
C(k)e−|k|x0 −D(k)e|k|x0

]
. (10)
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Similarly at x = x0 + d it follows that

C(k)e−|k|(x0+d) +D(k)e|k|(x0+d) = E(k)e−|k|(x0+d) (11)

ϵ2
[
C(k)e−|k|(x0+d) −D(k)e|k|(x0+d)

]
= ϵ3E(k)e−|k|(x0+d). (12)

Solving Equations (9)–(12) for the unknown amplitudes B(k), C(k), D(k) and E(k), yields

B(k) =

[
ϵ2 − ϵ3
ϵ2 + ϵ3

+
ϵ1 − ϵ2
ϵ1 + ϵ2

e2|k|d
]

e−2|k|x0

e2|k|d − eβ
A+(k) (13)

C(k) =
2ϵ1

ϵ1 + ϵ2

e2|k|d

e2|k|d − eβ
A+(k) (14)

D(k) =
2ϵ1(ϵ2 − ϵ3)

(ϵ1 + ϵ2)(ϵ2 + ϵ3)

e−2|k|x0

e2|k|d − eβ
A+(k) (15)

E(k) =
4ϵ1ϵ2

(ϵ1 + ϵ2)(ϵ2 + ϵ3)

e2|k|d

e2|k|d − eβ
A+(k) (16)

where

eβ =
(ϵ2 − ϵ1)(ϵ2 − ϵ3)

(ϵ1 + ϵ2)(ϵ2 + ϵ3)
. (17)

Finally, we note from Equations (13)–(16) that the induced potential scales with [exp(2|k|d) − exp(β)]−1

regardless of source potential. Resonances in the system are thus seen to occur when

e2|k|d =
(ϵ2 − ϵ1)(ϵ2 − ϵ3)

(ϵ1 + ϵ2)(ϵ2 + ϵ3)
. (18)

3 Alternative derivation

In this section we again seek to determine the resonance condition, however, present an alternative deriva-
tion which enables us to calculate the corresponding mode potentials more easily. This approach further-
more enables easy extension to the higher order geometries shown in Figure 1(b) and (c). We begin by
considering the second order case (Figure 1(a)), in which we seek bound surface modes whose potential
distribution takes the form of Equation (8). We may express the tangential electric field components at
x = d0 and x = d0 + d, denoted Ey,1 and Ey,2 respectively as

Ey,1 = ik B(k)e|k|x0 (19)

Ey,1 = ik
[
C(k)e−|k|x0 +D(k)e|k|x0

]
(20)

Ey,2 = ik
[
C(k)e−|k|(x0+d) +D(k)e|k|(x0+d)

]
(21)

Ey,2 = ik E(k)e−|k|(x0+d). (22)

The normal components of the displacement, Dx,1 and Dx,2, can similarly be expressed

Dx,1 = ϵ1|k| B(k)e|k|x0 (23)

Dx,1 = ϵ2|k|
[
−C(k)e−|k|x0 +D(k)e|k|x0

]
(24)

Dx,2 = ϵ2|k|
[
−C(k)e−|k|(x0+d) +D(k)e|k|(x0+d)

]
(25)

Dx,2 = −ϵ3|k| E(k)e−|k|(x0+d). (26)

Eliminating B(k), C(k), D(k), E(k), Dx,1 and Dx,2 from Equations (19)–(26) yields two linear equations
for Ey,1 and Ey,2, which written in matrix form reads[

1 + (ϵ2/ϵ1)tanh(|k|d) (ϵ3/ϵ1)sech(|k|d)
−sech(|k|d) 1 + (ϵ3/ϵ2)tanh(|k|d)

] [
Ey,1

Ey,2

]
≜ M(2)E(2) = 02 (27)
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where 0p is a p × 1 vector of zeros. Equation (27) only has non-trivial solutions when the matrix M has
zero determinant, i.e. det[M(2)] = 0, or equivalently

(ϵ22 + ϵ1ϵ3)tanh(|k|d) + ϵ2(ϵ1 + ϵ3) = 0. (28)

It is easy to show that Equation (28) is equivalent to Equation (18). The advantage of expressing the
resonance condition in the form of Equation (27) is that we can also determine the form of the potential
and field distributions on resonance. Specifically, through Gaussian elimination it can be shown that the
solution to Eq. (27) when Eq. (28) holds, is given by

E(2) =

[
1

−ϵ−1
3 [ϵ1sinh(|k|d) + ϵ2cosh(|k|d)]

]
. (29)

Extension of the derivations given above to the three and four interface cases shown in Figure 1(b) and
(c) follows analogous steps. We find for the three interface case that

M(3)E(3) =

 M(d2, ϵ2, ϵ1) −ϵ2 0
0 −ϵ3 M(d1, ϵ3, ϵ4)

M(d2, ϵ1, ϵ2) 0 M(d1, ϵ4, ϵ3)

 Ey(x0 − d2)
Ey(x0)

Ey(x0 + d1)

 = 03 (30)

where, omitting the k dependence for clarity,

M(d, ϵa, ϵb) = ϵacosh(|k|d) + ϵbsinh(|k|d) (31)

such that the resonance condition can be expressed as

det[M(3)] = ϵ2M(d1, ϵ3, ϵ4)M(d2, ϵ1, ϵ2) + ϵ3Md1, ϵ4, ϵ3M(d2, ϵ2, ϵ2) = 0. (32)

On resonance, the solutions to Equation (30) are of the form

E(3) =

 Ey(x0 − d2)
Ey(x0)

Ey(x0 + d1)

 =

 1
ϵ−1
2 M(d2, ϵ2, ϵ1)

ϵ3M(d2, ϵ2, ϵ1)/[ϵ2M(d2, ϵ3, ϵ4)]

 . (33)

For the four interface geometry of Figure 1(c) we have M(4)E(4) = 04 where

M(4) =


M(d2, ϵ2, ϵ1) −ϵ2 0 0

coth(2|k|x0)M(d2, ϵ1, ϵ2) ϵ3 0 cosech(2|k|x0)M(d1, ϵ5, ϵ4)
cosech(2|k|x0)M(d2, ϵ1, ϵ2) 0 ϵ3 coth(2|k|x0)M(d1, ϵ5, ϵ4)

0 0 −ϵ4 M(d1, ϵ4, ϵ5)

 (34)

with resonance condition

ϵ3M(d1, ϵ4, ϵ5) [ϵ2coth(2|k|x0)M(d2, ϵ1, ϵ2) + ϵ3M(d2, ϵ2, ϵ1)]

+ ϵ4M(d1, ϵ5, ϵ4) [ϵ2M(d2, ϵ1, ϵ2) + ϵ3coth(2|k|x0)M(d2, ϵ2, ϵ1)] = 0 (35)

and with corresponding solution, E(4), of
Ey(−x0 − d2)

Ey(−x0)
Ey(x0)

Ey(x0 + d1)

 =


1

ϵ−1
2 M(d2, ϵ2, ϵ1)

ϵ−1
2 cosh(2|k|x0)M(d2, ϵ2, ϵ1) + ϵ−1

3 sinh(2|k|x0)M(d2, ϵ1, ϵ2)
−[ϵ2cosh(2|k|x0)M(d2, ϵ1, ϵ2) + ϵ3sinh(2|k|x0)M(d2, ϵ2, ϵ1)]/[ϵ2M(d1, ϵ5, ϵ4)]

 .

(36)
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Figure 2: Schematics of geometries from Figure 2 under the action of the conformal transform given by Eq. (37), with material
choices considered in Sections 4.1-4.3

4 Engineering exceptional points in nanowire systems

To study the properties of nanowire systems we can apply the principles of transformation optics to
transform from the planar geometries of Figure 1, to those shown in Figure 2. Specifically, defining
w = x + iy in the original coordinates, and w′ = x′ + iy′ in the transformed coordinates we use the
conformal transform

w′ =
g

exp(w)− 1
(37)

where g is a constant that controls the size of the transformed cylinder(s). Specifically, the diameters of
the cylinders for the core-shell nanowire of Figure 2(a) are

D1 =
g

exp(x0 + d)− 1
+

g

exp(x0 + d) + 1
= g cosech(x0 + d) (38)

D2 =
g

exp(x0)− 1
+

g

exp(x0) + 1
= g cosech(x0) (39)

For the core-shell and monomer structure shown in Figure 2(b) we have D1 = g cosech(x0 + d2), D2 =
g cosech(x0) and D3 = g cosech(x0 − d2), whilst for the core-shell dimer geometry of Figure 2(c) we have
similarly D1 = g cosech(x0 + d1), D2 = D4 = g cosech(x0) and D3 = g cosech(x0 + d2).

Under the conformal transform the electrostatic potential is preserved [3], i.e. ϕ(x, y) = ϕ′(x′, y′) whilst

the electric permittivity and magnetic permeability tensors transform according to ϵ
′
j = ϵjJJT/det[J] and

µ
′
j = µJJT/det[J], where we have assumed all media are isotropic in the origin system, and

J =
g

2(coshx cos y)2

 1− coshx cos y − sinhx sin y 0
sinhx sin y 1− coshx cos y 0

0 0 2g−1(coshx− cos y)2

 (40)

is the Jacobian matrix for the transform given in Equation (37). Consequently the transformed tensors
are of the form

ϵ
′
j

ϵj
=

µ
′
j

µj

=

 1 0
0 1 0
0 0 4(cos y − coshx)2/g2

 . (41)

In the quasi-static limit, in which the dimensions of the relevant regions of interest are smaller than the
optical wavelength, we may neglect the retardation effects as described by the spatial dependence of these
material tensors. Consequently, we see that the electric permittivity and magnetic permeability of each
region are also preserved under the action of Equation (37). Furthermore, we note that solution of the
electrostatic problem (as described by Laplace’s equation) restricts our discussion to transverse-magnetic
(TM, or equivalently p-polarised) modes [4].
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4.1 Core-shell nanowire (2nd order EP)

With the transformation complete, we now consider the asymmetric core-shell geometry shown in Fig-
ure 2(a). We consider a metallo-dielectric core-shell nanowire in a host material, such that ϵ1 = ϵh, ϵ2 = ϵm
and ϵ3 = ϵd whereby the resonance condition becomes

(ϵ2m + ϵhϵd)tanh(nd) + ϵm(ϵd + ϵh) = 0. (42)

Note that the periodicity in the transform implies k = n (n ∈ Z) in a similar fashion to that seen in
Section 2 and that ϵd is in general complex accounting for gain or loss in the dielectric. Note also that
generally, solutions to Equation (2) require n ̸= 0. Expressing Equation (42) as a quadratic equation in
ϵm, i.e.,

ϵ2m tanh(nd) + ϵm(ϵd + ϵh) + ϵhϵd tanhnd = 0 (43)

we can solve for values ϵm, or equivalently (by virtue of the material dispersion) optical frequencies, at which
resonances occur. The resonant modes however become degenerate when Equation (43) has a repeated
root, i.e. when

(ϵh + ϵd)
2 = 4ϵhϵd tanh

2(nd). (44)

or equivalently
ϵd = ϵh[2 tanh

2(nd)− 1± 2i tanh(nd)sech(nd)]. (45)

Substituting Equation (44) into Equation (43) and solving subsequently yields

ϵm = −ϵh + ϵd
2

cothnd = −ϵh[tanh(nd)∓ isech(nd)]. (46)

4.2 Coupled core-shell/monomer nanowires (3rd order EP)

We now consider the coupled nanowire structures depicted in Figure 2(b) where we assume ϵ1 = ϵm, ϵ2 = 1,
ϵ3 = ϵm and ϵ4 = ϵd. Note that the two wire system depicted requires d2 > x0, otherwise a single three-layer
nanowire structure results which is not our case of interest. With these replacements Equation (32) can
be written as a cubic equation in ϵm

Aϵ3m +Bϵ2m + Cϵm +D = 0 (47)

where

A = sinh(nd1) sinh(nd2) (48)

B = ϵh cosh(nd1) cosh(nd2) + ϵh sinh(nd1) cosh(nd2) + ϵd cosh(nd1) sinh(nd2) (49)

C = ϵhϵd cosh(nd1) cosh(nd2) + ϵhϵd sinh(nd1) cosh(nd2) + ϵ2h cosh(nd1) sinh(nd2) (50)

D = ϵdϵ
2
h sinh(nd1) sinh(nd2) (51)

and n ̸= 0. The roots of Equation (47) are all identical if

3AC −B2 = 0 (52)

27A2D − 9ABC + 2B3 = 0 (53)

and take the form

ϵm = − B

3A
=

1

3
[ϵh[1 + coth(nd1)] coth(nd2) + ϵd coth(nd1)] (54)

as discussed in the main text.
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4.3 Coupled core-shell/core-shell nanowires (4th order EP)

Finally, we consider the core-shell dimer type structure shown in Figure 2(c). We assume a parity time
symmetric configuration whereby d1 = d2 = d, ϵ1 = ϵ∗d, ϵ2 = ϵ∗m, ϵ3 = 1, ϵ4 = ϵm and ϵ5 = ϵd. We further
assume ϵm = ϵ∞ − ω2

p/ω
2 + iα, whereas ϵd = ϵ − iβ. Substituting these parameters into Equation (35)

yields the polynomial express

Aω8 +Bω6 + Cω4 +Dω2 + E = 0 (55)

where

A =
1

8
cosech (nx0) sech (nx0)

[ (
α2 + (ϵ∞ − 1) 2

) (
α2 + β2 + ϵ2 + ϵ2∞

)
sinh [2n (x0 − d)]

+ 2
(
α2 + (ϵ∞ − 1) 2

)
(αβ − ϵϵ∞) cosh [2n (x0 − d)]

− 2
(
α2 + ϵ2∞ − 1

) (
α2 − β2 − ϵ2 + ϵ2∞

)
sinh [2nx0]

+ 8α (αϵ+ βϵ∞) cosh [2nx0]

+
(
α2 + (ϵ∞ + 1) 2

) (
α2 + β2 + ϵ2 + ϵ2∞

)
sinh [2n (x0 + d)]

+ 2
(
α2 + (ϵ∞ + 1) 2

)
(αβ − ϵϵ∞) cosh [2n (x0 + d)]

]
(56)

B =
1

4
ω2
pcosech (nx0) sech (nx0)

[ (
α2 (1− 2ϵ∞)− (ϵ∞ − 1)

(
β2 + ϵ2 + ϵ∞ (2ϵ∞ − 1)

))
sinh [2n (x0 − d)]

+
(
α2ϵ− 2αβ (ϵ∞ − 1) + ϵϵ∞ (3ϵ∞ − 4) + ϵ

)
cosh [2n (x0 − d)]

+ 2ϵ∞
(
2α2 − β2 − ϵ2 + 2ϵ2∞ − 1

)
sinh [2nx0]− 4αβ cosh [2nx0]

+
(
−α2 (2ϵ∞ + 1)− (ϵ∞ + 1)

(
β2 + ϵ2 + 2ϵ2∞ + ϵ∞

))
sinh [2n (x0 + d)]

+
(
α2ϵ− 2αβ (ϵ∞ + 1) + ϵ (ϵ∞ + 1) (3ϵ∞ + 1)

)
cosh [2n (x0 + d)]

]
(57)

C =
1

4
ω4
pcosech (2nx0)

[ (
1 + 2α2 + β2 + ϵ2 − 6ϵ∞ (ϵ∞ − 1)

)
sinh [2n (x0 − d)]

+ (ϵ (4− 6ϵ∞) + 2αβ) cosh [2n (x0 − d)]

+
(
1 + 2α2 + β2 + ϵ2 + 6ϵ∞ (ϵ∞ + 1)

)
sinh [2n (x0 + d)]

+ (−2αβ + 6ϵϵ∞ + 4ϵ) cosh [2n (x0 + d)]

+
(
1− 2α2 + β2 + ϵ2 − 6ϵ2∞

)
2 sinh [2nx0]

]
(58)

D = −ω6
p

[
4ϵ∞ sinh[nd] coth [nx0] + cosh[nd]

(
2ϵ coth [nx0] + coth2 [nx0] + 1

) ]
sinh[nd] tanh [nx0] (59)

E = ω8
p sinh

2(nd) (60)

Equation (55) is a quartic equation in ω2, the solutions to which are identical if

8AC − 3B2 = 0 (61)

B3 − 4ABC + 8A2D = 16AB2C − 64A2BD − 3B4 + 256A3E = 0 (62)

Denoting these solutions as Ξ = ω2
r = −B/4A, we can then find the eigenfrequencies ωr = ±

√
Ξ, where

solutions for which the real part is negative are discarded.
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