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Abstract
Compared to pure intensity-based imaging techniques, polarimetric imaging can pro-

vide additional information, particularly about an imaged object’s compositional,

morphological and microstructural properties. The value of polarimetric imaging has

already been demonstrated in various applications, such as early glaucoma detection

and cancer discrimination. Its applicability, however, to practical in-vivo imaging

situations is limited as the object of interest is often located behind a scattering

layer, such as biological tissue, which scrambles both the spatial and polarimetric

information about the object that is contained in the propagating light. As such,

this work set out to find a means of conducting polarimetric imaging through scat-

tering media.

Under the assumption that it is possible to illuminate the object plane with the

required spatial patterns, single pixel cameras can enable imaging in scattering

environments and were hence thoroughly investigated in this thesis as a route to

polarimetric imaging through scattering media. A theoretical model for single pixel

polarimetric imaging was first developed, and conditions under which the proposed

method was feasible were identified and verified using 2D coupled line dipole sim-

ulations. The proposed method was further tested through experiments conducted

using an in-house custom-built setup, composed of off-the-shelf components. To

mitigate noise and to ensure that the obtained polarimetric image was physical, a

constrained least squares algorithm was proposed and implemented. Experiments

with various test objects hidden behind scattering phantoms showed that single pixel

polarimetric imaging was able to successfully reconstruct the polarimetric images of

the hidden object, whereas a spatially resolved detector in the same configuration re-

sulted in an image that bore no resemblance to the test object. Further experiments

that were conducted with the same test objects hidden behind chicken breast slices

were, unfortunately, unable to recover an accurate polarimetric image of the hidden

object. Additional investigations identified two factors that had likely affected the

image reconstruction - spatial inhomogeneity and temporally varying transmittance

of the chicken breast, both of which were unaccounted for in the data processing.

On the basis of the experiments and simulations conducted in this work, single pixel

polarimetric imaging was found to be a feasible approach for polarimetric imaging

through scattering media. Finally, further improvements to establish single pixel

polarimetric imaging as a practical technique are discussed.
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2.2 A diagram of the Poincaré sphere, showing the x, y and ±45◦ linearly

polarised states, as well as right and left circularly polarised light. . . . . . 51

2.3 Figure showing the definition of the scattering angles, θ and ψ. . . . . . . 64

3.1 Illustration of single pixel polarimetric imaging. The polarised incident il-

lumination, produced by a polarisation state generator (PSG), is spatially

modulated such that a basis vector of the chosen measurement basis illu-

minates a test object with a spatially varying Jones matrix. The transmit-

ted field is then analysed using a non-imaging polarisation state analyser

(PSA), which extracts the polarimetric information. . . . . . . . . . . . . 73

3.2 Illustration of single pixel polarimetric imaging with a scattering medium

present. The polarised incident illumination, produced by a polarisation

state generator (PSG), is spatially modulated such that a basis vector of

the chosen measurement basis illuminates a test object with a spatially

varying Jones matrix. The field then propagates through the scattering

medium, and the transmitted light is analysed using a non-imaging polar-

isation state analyser (PSA), which extracts the polarimetric information. 76

3.3 Simulation geometry showing the definition of the electric field in the far

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11



LIST OF FIGURES

3.4 Illustration of an infinite cylinder of radius a that is illuminated by ~Einc,

with the scattered field observed in the direction of ~Escat. . . . . . . . . . 90

3.5 Average coefficient of variation across all Mueller matrix elements as a

function of illumination pixel size for different medium thicknesses, ζ, cal-

culated using 200 iterations. . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Coefficient of variation as a function of illumination pixel size for differ-

ent medium thicknesses, ζ, calculated using 200 iterations. The empty

elements have mean values of zero. Plot legend follows that of Figure 3.5. . 97

3.7 Illustration showing the shape of f(x2) for different widths (in arbi-

trary units) of Π and Cij. Left: Original functions, Right: Cross-

correlation result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 Simulation geometry used to investigate the width of Cr1 . . . . . . . . . . 106

3.9 C(∆x,∆
′
x) at a fixed output point (x2 = 0) as a function of separation

between input points for ζ = 1 (blue), ζ = 2 (red) and ζ = 3 (yellow). . . . 107

3.10 Intensity of the two pixels used for the simulation. . . . . . . . . . . . . . 110

3.11 Am (red bars) versus Bml (blue bars). Other than the matrix elements

in the labels of this plot, all other elements lie within the blue part

of the histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.12 Intensity of the two overlapping pixels used for the simulation. . . . . . . 111

3.13 Am (red bars) versus Bml (blue bars) for ζ = 3 and overlapping pixels. . . 111

3.14 Average coefficient of variation as a function of pixel size for different values

of NA, for the scattering medium with a thickness corresponding to ζ = 3. 113

3.15 Average coefficient of variation as a function of NA for a pixel size of 300

microns incident on a scattering medium with a thickness corresponding

to ζ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.16 Plot to illustrate the detector cut-off for different NA over a sample inten-

sity speckle for a pixel size of 300 microns incident on a scattering medium

with a thickness corresponding to ζ = 3. The vertical bars indicate cut-offs

for different choices of detector NA. . . . . . . . . . . . . . . . . . . . . 114

3.17 Am (red bars) versus Bml (blue bars) for ζ = 3, with a collection NA of

0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12



LIST OF FIGURES

4.1 Experimental setup. Key: variable waveplate (VWP), beamsplitters (BS),

lens (L), pinhole (P), quarter waveplate (QWP), linear polariser (LP), de-

tectors (D), mirror (M), digital micromirror device (DMD). Details about

the lenses, such as their focal length and model number, can be found in

Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Test target used for proof-of-concept experiments. . . . . . . . . . . . . . 123

4.3 The layout of the PSA. Key: beamsplitters (BS), quarter waveplate (QWP),

linear polariser (LP), detectors (D), lens (L). . . . . . . . . . . . . . . . 126

4.4 Layout for optical system for imaging DMD onto the object plane. . . . . 129

4.5 Spot diagram for optical system for imaging DMD onto the object plane,

showing the image plane spot sizes for the three object distances tested. . 129

4.6 Seidel coefficients at each surface in the system. . . . . . . . . . . . . . . 130

4.7 Intensity image of letter R obtained using the system. The x and y axes

correspond to pixel indices. . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.8 Verification of calibration using a Glan-Thompson prism Comparison

of intensity simulated using the experimental and theoretical Mueller

matrices before (left) and after (right) fitting and correcting for offset. 142

4.9 Frobenius norm of the difference between the theoretical and experimen-

tal Mueller matrices for the Glan-Thompson prism as a function of the

transmission axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.10 Verification of calibration using a quarter waveplate Comparison of

intensity simulated using the experimental and theoretical Mueller

matrices before (left) and after (right) fitting and correcting for offset. 144

4.11 Frobenius norm of the difference between the theoretical and experimental

Mueller matrices for the quarter waveplate. . . . . . . . . . . . . . . . . 145

4.12 (left) Measurement samples, where each sample was an average over

30 datapoints, taken by detector D3 under constant illumination

showing a spike in the data, (right) the datapoints making up the

sample corresponding to the observed spike compared to a sample

that did not exhibit a spike. . . . . . . . . . . . . . . . . . . . . . . . 147

4.13 Standard deviation for each measurement sample in Figure 4.12. . . . . . 148

4.14 An example of a positive Hadamard mask used in the experiment. . . . . 149

13



LIST OF FIGURES

4.15 Illustration showing how two non-zero spatial masks can be used to obtain

the projection between the object transmission and the Hadamard basis

mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.16 The power spectrum of the noise obtained when the detectors were illu-

minated. For readability, the zero-order frequency has been set to zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.17 Same as Figure 4.16, but zoomed in on the central region of the plot. . . . 151

4.18 Log of the noise spectrum obtained without any illumination on the de-

tectors. For readability, the zero-order frequency has been set to zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.19 Same as Figure 4.18, but zoomed in on the central region of the plot. . . . 152

4.20 Acquired data using detector 4 with SM4 present (left) With lock-in

detection (right) Without lock-in detection. . . . . . . . . . . . . . . 153

4.21 Single pixel images of the test object taken (left) with lock-in detec-

tion (right) without lock-in detection. . . . . . . . . . . . . . . . . . . 154

4.22 Distribution of polarisation states on the Poincaré sphere for the (left)
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Chapter 1

Introduction

1.1 Motivation and Aims

Optical imaging is a powerful and indispensable tool for applications in biomedicine.

For instance, it enables the quantitative measurement and monitoring of biological

tissues, hence making it critical to the advancement of relevant technology, such

as improved medical diagnostics and treatment. Most commonly, it is light inten-

sity that is measured in imaging, with some methods including a discrimination

of the light frequency. Yet, knowledge of the polarisation of light, which is of-

ten ignored, can empower additional imaging functionalities, as it contains useful

information about the object’s compositional, morphological and microstructural

properties. These properties are related to the polarimetric features of the imaged

object, such as its depolarisation, birefringence and diattenuation, which affect the

measured polarisation state. For example, collagen has a fibrous structure that

exhibits retardance and linear diattenuation. Using imaging polarimetry, these po-

larimetric properties have been measured and utilised for the determination of the

density and orientation of collagen samples [1, 2], which are vital information for in-

vestigations of cartilage diseases, such as osteoarthritis. In addition, being sensitive

to structure, imaging polarimetry has also found use in cancer discrimination [3, 4],

as the structure of the cancerous tissue is altered due to factors such as increased
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vascularisation and cell density. Further examples of biomedical applications of po-

larisation imaging include early glaucoma detection [5, 6] and bacterial studies [7].

Unfortunately, the applicability of polarimetric imaging is often limited in practical

in-vivo imaging geometries, where the object of interest (e.g. a tumour) is often

located behind a scattering medium, such as biological tissue. Scattering scrambles

both the spatial and polarisation information of light propagating through these

scattering media, such that in many cases, the obtained image bears little resem-

blance to the obscured object, but instead shows a random distribution of intensity

and polarisation states. To date, by utilising techniques that isolate unscattered

light (as discussed later in this chapter), in-vivo polarimetric imaging can be per-

formed up to depths on the order of one transport mean free path (TMFP) [8].

The ability to image deeper, however, is required for many applications, such as for

the in-vivo imaging of cancerous regions in deeper layers of skin without the use of

invasive biopsies [9]. In view of this need, this work aims to find a means that would

enable polarimetric imaging at greater depths (up to multiple times of the TMFP),

with a focus on techniques for biomedical applications.

In this section, state-of-the-art techniques for imaging through scattering media

are first reviewed. Then, based on this understanding, the research direction for

this thesis is presented.

1.1.1 Imaging with Ballistic Light

One way to form an image of an obscured object is to reject scattered light and

collect only the unscattered (or otherwise known as ballistic) component of light,

by distinguishing based on the properties preserved mainly by unscattered light.

For example, confocal microscopy [10] discriminates ballistic photons spatially by

rejecting scattered light via a spatial pinhole located in a plane that is the imag-

ing conjugate of the object plane. This is otherwise known as spatial-gating. On

the other hand, optical coherence tomography (OCT) [11] uses coherence-gating to

isolate the ballistic component of light by using an interferometric setup that is il-

luminated by a broadband light source with low temporal coherence (i.e. a short
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coherence length). Temporal filtering of the ballistic signal has also been used in

time-gated ballistic imaging [12, 13], where a pulsed light source and time-resolved

detection discriminates ballistic photons based on their time-of-flight. It should be

noted that though distinct in their experimental implementation, OCT and tempo-

ral filtering with a pulsed source are fundamentally similar as both techniques aim

to reject photons that, due to scattering, have taken longer paths in the scattering

medium. Alternatively, instead of using a pulsed beam, the intensity or polarisa-

tion state of a continuous wave source can be temporally modulated [14, 15]. The

ballistic component can then be extracted via a band-pass filter of the collected sig-

nal in Fourier space about the known modulation frequency. Finally, ballistic light

can also be segregated via its polarisation state, that is, polarisation-gating [16].

In polarisation-gating, polarisation optics is used to collect only the co-polarised

component of the light returning from the test specimen, that is, the light that

maintains the polarisation state of the incident light. Since scattering scrambles

both the propagation direction and polarisation state of light, collecting only the

co-polarised component of light reduces the amount of scattered light in the mea-

sured signal.

The four above-mentioned ways of discriminating ballistic photons - spatial filter-

ing, temporal filtering, coherence gating and polarisation gating, have been used

separately or in combination with each other, and have been shown to be widely

successful. The intensity of ballistic light, however, decreases exponentially with

depth in the scattering medium, as described by the Beer-Lambert law (discussed in

Chapter 2). This phenomenon fundamentally limits the imaging depth of these tech-

niques. This limitation is alleviated slightly by the fact that biological tissues scatter

mostly in the forward direction, so that the spatial and polarimetric information of

the imaged object can persist even after a few scattering events. Nevertheless, at

best, these techniques operate at a maximum penetration depth of about one TMFP,

which is the average distance after which the propagation direction of the scattered

photons become uncorrelated with their initial propagation direction, and can be

taken to be fully random. For biological tissue, the TMFP is on the order of 1mm

[8, 17, 18].
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Rather than rejecting scattered light, some techniques have opted, instead, to re-

duce the amount of scattered light produced in the first place. This can be done, for

example, through optical clearing [19], where chemical treatment is applied to the

sample to make it more transparent. Such methods, however, are toxic and cannot

be applied to living samples. The amount of scattered light produced can also be

reduced by turning to longer wavelengths. The scattering cross section, which de-

scribes the proportion of incident light that is scattered, has an inverse relationship

with wavelength, so less scattering occurs at longer wavelengths. This phenomenon

is used in techniques such as photoacoustic imaging [20, 21] and multi-photon mi-

croscopy [22, 23]. Nevertheless, equipment suited for wavelengths outside of the

visible range tend to be more expensive and these techniques suffer fundamentally

from poorer imaging resolution due to the larger diffraction limit at longer wave-

lengths.

1.1.2 Imaging with Scattered Light

Given the drawbacks of the above-mentioned techniques, there is a growing interest

to make use of scattering rather than get rid of it. In the weakly scattering regime,

rather than rejecting scattered light entirely, the distortion to the incident wavefront

caused by scattering can be corrected by using adaptive optics [24]. In this method,

the wavefront originating from a guide star located near to the imaging area of in-

terest is analysed using a wavefront sensor, such as a Shack-Hartmann lenslet array,

and the wavefront distortions are then corrected for using a spatial light modulator

(SLM), like a deformable mirror or an array of phase-modulating liquid crystals. A

well-established technique, adaptive optics has already been successfully applied to

many fields, including astronomy [25] and retinal imaging [26]. One limitation faced

by adaptive optics, however, is the requirement of a physical guide star [27] situated

close enough to the imaging area of interest such that it experiences similar aberra-

tions, which is a condition that is not always available in practice. Alternatively, a

virtual guide star [28] can be used, but these are difficult to create at greater depths.
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Furthermore, adaptive optics is usually concerned with the correction of low order,

smoothly varying aberrations, and is ill-equipped to deal with the more complex

phase variations caused by scattering [29].

Feedback-based Wavefront Shaping

When light is incident on a static scattering medium, a speckle pattern is observed,

both in transmission and reflection. This speckle is, in fact, an interference pattern

caused by the superposition of many waves arriving at the observation plane, with

different phases and amplitudes caused by scattering. By altering the incident wave-

front, it is possible to manipulate this interference pattern, so that the transmitted

or reflected light takes up a desired form, such as a focus. In 2007, this control of

multiply scattered light was first demonstrated by Vellekoop et al. [30]. In their

seminal paper, it was shown that by shaping an incident wavefront using a SLM,

multiply scattered light can be made to interfere such that a focus, or even multi-

ple foci, are formed after transmission through an opaque static scattering medium.

The optimal wavefront to use was found by cycling the phase of each segment on

the SLM through 2π, and choosing the phase that maximised a feedback signal -

the intensity of the target distribution. Using the same technique, the authors later

demonstrated focusing on a fluorescent bead embedded within a layer of zinc oxide

pigment [31]. Cycling the phase for each segment may not be the most efficient

means of wavefront shaping, and in view of time and signal to noise ratio (SNR)

considerations, other algorithms for determining the optimal wavefront have also

been proposed [32]. In addition, instead of phase modulation of the incident wave-

front as initially implemented by Vellekoop et al., amplitude modulation can also

be used [33]. Though pure amplitude modulation theoretically results in a lower

intensity enhancement at the focus [34], it allows for faster implementations based

on digital micromirror devices (DMD), which have fast switching speeds [35].

Such wavefront shaping techniques have been further explored by many researchers

using various feedback signals, such as two-photon fluorescence [36], the ultrasound

signal generated via the photo-acoustic effect [37] and the frequency-shifted light

induced by the acousto-optic effect [38]. Moreover, by choosing the appropriate
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feedback signal, it has been shown that wavefront shaping techniques can be used to

form foci with distinct polarisation [39, 40], spectral [41, 42] and temporal [43, 44]

selectivity. Once these foci have been formed, they can be raster scanned to form

images [45] of objects hidden behind the scattering medium through the use of the

optical angular memory effect [46]. The angular memory effect, which is further

discussed later in this section, is where the output speckle from a tilted incident

wavefront is also tilted but remains otherwise unchanged. This effect occurs over

a limited angular range, within which the optimised foci can be scanned. Other

than imaging, the ability to form foci through scattering media can also be useful in

other applications, such as for the optical trapping and manipulation of nanobeads

behind a scattering layer [47].

At heart, these wavefront shaping techniques are based on the fact that the re-

sulting scattered light is deterministic for any fixed instance of disorder. Thus, one

challenge faced by these techniques is the continual re-optimisation of the incident

wavefront that is required for dynamic scattering media, which result in scattered

fields that change with time. Furthermore, the limited range of the optical memory

effect limits the imaging field of view of these techniques. Outside of this field of

view, or for a different target field distribution, the incident wavefront has to be

reshaped.

Optical Phase Conjugation

An alternative technique to wavefront shaping, known as optical phase conjugation,

makes use of the time reversal symmetry of light. The first use of time-reversal to

recover an initial signal that had been scrambled by scattering was in the field of

acoustics [48, 49], but it has since been applied to the optical regime. The key idea

is that scattered light that is measured after propagation through the scattering

medium can be “time-reversed” and sent back through the same scattering medium

to recover the original incident field distribution, be it a focus or an image of a hid-

den object behind the scattering medium. For monochromatic light, time reversal is

equivalent to phase conjugation, and can be achieved using phase conjugate mirrors

based on photorefractive mirrors [50, 51]. Alternatively, phase conjugation can be
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achieved digitally by first measuring the scattered field, for example by using dig-

ital phase-shifting holography, before forming the phase conjugate of the scattered

field with a SLM and sending it back through the scattering medium [52, 53, 54].

Optical phase conjugation has already been successfully applied to imaging through

various biological tissues in the multiple scattering regime [51, 55, 56], with one of

its main advantages over wavefront shaping techniques being that the shaped wave-

front is computed from a single measurement of the output speckle field. Optical

phase conjugation methods, however, require access to both sides of the scattering

medium. This obstacle may seem to render optical phase conjugation inutile for

practical purposes, but solutions have been designed to overcome this problem. One

example of such a solution is to use ultrasonically-encoded light [52, 57, 58], where

light within an ultrasound focus is shifted in frequency due to the acousto-optic

effect. The frequency-shifted light at the focus serves as a virtual guide star, so that

when the scattered light at this shifted frequency is collected and “time-reversed”,

an optical focus within the scattering medium can be formed. Other sources have

also been used as virtual guide stars, such as light produced by second harmonic

generation [53], or even temporally incoherent fluorescence [54]. Nevertheless, sim-

ilar to wavefront shaping techniques, the shaped wavefront is only valid for a fixed

instance of disorder, which means that the applied wavefront has to be recomputed

continuously for dynamic scattering media, or when the scattering medium is shifted

in any way. Furthermore, true time reversal requires the measurement and manipu-

lation of light amplitude, phase and polarisation over the full solid angle, and this is

difficult to achieve given the finite size of the components involved, such as photore-

fractive mirrors, SLMs and charge-coupled device (CCD) or complementary metal

oxide semiconductor (CMOS) cameras. As a result of this partial reconstruction of

the “time-reversed” wavefront, a background is typically present with the recovered

initial field [55, 59], which for imaging applications would imply a decrease in the

signal-to-noise ratio.

Imaging with Speckle Correlations

A spatial basis consisting of a complete set of orthogonal spatial modes can be used

to describe any arbitrary field at the input or output of a scattering medium. Various
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definitions for this spatial basis are possible, for example a point basis, where each

spatial mode corresponds to a point source or detector, or a Fourier basis, where

spatial modes correspond to plane waves travelling at different angles. It has been

shown that due to the existence of various correlations in the output speckle from

different input spatial modes, information on the relative amplitude and phase of

each input mode is preserved even upon propagation through a scattering medium

[60]. As such, information about the object hidden behind the scattering medium

is not completely lost and can be exploited for imaging. In particular, transmitted

incident modes with a transverse wavevector difference of ∆k⊥ <
1
L

have been found

to be highly correlated [46], where ∆k⊥ is the change in the transverse wavevector

and L is the thickness of the scattering medium. If an incident plane wave is tilted

within this angular range, the output speckle from the scattering medium is tilted

but remains otherwise the same, resulting in a shift of the output speckle in the

far-field. Thus, a change in the incident field (i.e. a tilt) is directly manifested in

the output speckle, showing that information about the incident field persists even

though it has been scattered by the medium. This is commonly known in literature

as the angular memory effect. The angular range over which this tilt correlation

persists is independent of the TMFP and the specific instance of disorder, and is

only inversely related to the medium thickness [46]. The same phenomenon exists

for the reflected modes, but the angular range is determined, instead, by the trans-

port mean free path [61].

As discussed above, the angular memory effect has been used to scan foci formed

via wavefront shaping or optical phase conjugation, so that an image can be formed

by raster scanning [45]. A few works have opted for a different approach, making

use of the memory effect directly for imaging. Bertolotti et al. [62] illuminated a

fluorescent object placed behind a scattering medium using a collimated laser beam,

and collected the fluorescence intensity in reflection through the scattering medium

using a photodiode. As the illumination angle of the beam was changed within

the range of the angular memory effect, the output speckle was shifted across the

hidden object. Thus, the measured intensity, as a function of illumination angle,

θ, is a convolution of the unchanging output speckle, S, and the object intensity
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reflectance, O, which can be written as

I(θ) = O(θ
′
) ∗ S(θ

′
) ≈ O

(
x
′

z0

)
∗ S
(
x
′

z0

)
, (1.1)

where ∗ denotes a convolution and in the limit of small angles θ
′ ≈ x

′

z0
. z0 is the

distance between the object and the front surface of the scattering medium and x
′

is the spatial co-ordinate in the object plane. Defining β = x
′

z0
, an autocorrelation of

I(θ) as a function of θ, averaged over different instances of disorder, can be written

as

〈I(θ) ? I(θ)〉 = 〈(O(β) ∗ S(β)) ? (O(β) ∗ S(β))〉.

= (O(β) ? O(β)) ∗ 〈S(β) ? S(β)〉
(1.2)

where ? denotes the autocorrelation and 〈...〉 indicates an averaging over different

instances of disorder. The width of the autocorrelation of S is usually peaked and

narrow [63] and is often approximated to be a delta function such that 〈I(θ)?I(θ)〉 ≈
(O(β) ? O(β)) [62, 64]. As such, the autocorrelation of the object can be directly

obtained from an autocorrelation of the measured intensity. An image of the object

can then be reconstructed from its autocorrelation using phase retrieval techniques

[65].

Katz et al. [64] used a similar principle but implemented it using a spatially in-

coherent light source, which enabled I(θ) to be obtained in a single shot. This elim-

inated the need for multiple acquisitions over different angles of the incident laser

beam. Since the speckle coming from each point of the object adds up incoherently,

the output speckle from the scattering medium acts as an intensity point spread

function. This can be contrasted to the point spread function from a lens. Imaging

of blood cells [66] and moving objects [67] have also been successfully demonstrated

via the same technique.

Unlike the imaging techniques that have been previously discussed, one key ad-

vantage of using the memory effect for imaging is that neither pre-calibration of the

system nor the implementation of guide stars are required. Moreover, the object

can be recovered from a single shot while the simple experimental design makes it
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compatible with existing microscope systems, as demonstrated by Hofer et al. [68].

Unfortunately, this group of techniques faces a few important limitations.

One drawback of these techniques is that the finite width of the speckle autocorrela-

tion function 〈S(β)?S(β)〉, which is often neglected, could lead to some inaccuracies

in the reconstruction for small or complex objects. The object complexity is also

limited by the phase retrieval techniques that are commonly used [65]. An alter-

native method was proposed by Edrei et al. [69], who measured the point spread

function of the system with the scattering medium present and applied deconvo-

lution techniques to recover the hidden object from Equation 1.1. This, however,

requires a pre-calibration step that negates one of the main benefits of these imaging

techniques.

These techniques also suffer from a lack of depth resolution. Though some so-

lutions have been proposed to extract depth information from these techniques

[70, 71, 72, 73], each sacrifices some of the benefits afforded by imaging with the

memory effect. For example, instead of a 2D autocorrelation, Yuka et al. [70] used a

3D autocorrelation to obtain a 3D image of the hidden object. In order to compute

the 3D autocorrelation, the detector was moved axially to form a 3D image of the

speckle. In this case, 3D information was obtained at the expense of increased com-

putational intensity and an added requirement for sequential measurements. Singh

et al. [72] added a guide star to the object plane so that the autocorrelation of the

speckle would include cross-terms between the test object and the guide star that

would be spatially shifted due to their separation distance. Since the guide star was

assumed to be a point source, the spatially shifted cross-terms were then images

of the hidden object. Though the object is recovered without the need for phase

retrieval techniques, a guide star within the memory effect range is required.

Theoretically, the angular range of the memory effect, which effectively governs

the field of view of these techniques, is given by the half angle, ∆θ ≈ λ0
πL

[64], where

λ0 is the light wavelength. For a fixed object distance, z0, this corresponds to an

object size of h ≈ 2λ0z0
πL

. As such, it can be seen that at close distances to the
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scattering medium, as is the case for embedded objects that are typically encoun-

tered in practice, only small objects can be imaged. It should be noted, however,

that these equations were formulated under the assumption that scattering is fully

diffusive, that is, the direction of photons propagating through the medium is fully

scrambled. In real scattering samples, such as biological tissue, it is often the case

that scattering occurs mostly in the forward direction [17], such that the direction

of incident light is preserved over longer distances. As a result, the theoretically

predicted values for the field of view could be an underestimate of the true value, as

was observed in measurements over 0.5mm thick slices of chicken breast by Katz et

al. [64]. In their experiment, an angular correlation range of about 4◦ was observed,

as determined from the point at which the correlation function dropped to 1
e
. This

corresponded to a theoretical thickness of 7 microns, which is much smaller than

the actual thickness of the chicken breast samples used. Nonetheless, the field of

view related to these techniques remains small, particularly for samples close to the

scattering medium. A translation memory effect was also identified by Judkewitz

et al. [74], where a shift of an input point source results in a shift in the output

speckle that remains otherwise unchanged. Though it has not been demonstrated,

it was proposed that this shift correlation could be a means of extending the field

of view [75].

Imaging with the Transmission Matrix

All of the above-mentioned techniques can be described using a scattering matrix

formulation. Following the notation of Mello et al. [76], the scattering matrices, S

and R can be defined as follows. Consider the system depicted in Figure 1.1 that

consists of three regions, regions I, II and III. Regions I and III are the regions to

the left and right of the scattering medium respectively, while the scattering medium

is located in region II.
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Figure 1.1: Geometry for the definition of the S and R matrices.

The transverse fields in each region can be decomposed as a sum of leftward and

rightward propagating plane waves. For the ith region, this can be written as

Ei =
N∑
n=1

[
ani exp

(
i
(
~knr,i · ~r −

∣∣knz,i∣∣ z))+ bni exp
(
i
(
~knr,i · ~r +

∣∣knz,i∣∣ z))] , (1.3)

where ani and bni are the coefficients for the nth rightward and leftward propagating

wave respectively, and ~knr,i and knz,i are the transverse and axial components of the

wavevector, ~k, for the nth plane wave, so that
∣∣~knr,i∣∣2 +

∣∣knz,i∣∣2 =
∣∣~k∣∣2 =

(
2π
λ0

)2

. In

addition, ~r represents the transverse co-ordinates, while the axial co-ordinate is

denoted by z. With this notation, the S and R matrices of size 2N × 2N can be

defined as [76]  ~bI
~aIII

 = S

 ~aI
~bIII

 =

rL tR

tL rR

 ~aI
~bIII

 ,

~aIII
~bIII

 = R

~aI
~bI

 .

(1.4)

In this thesis, matrices are denoted using a bold typeface, while vectors are denoted

with an overlying arrow. In Equation 1.4, r and t are the reflection and transmission

matrices respectively, for light that is incident on the scattering medium from the

left (subscript L) and right (subscript R). In addition, for the ith region, ~ai and ~bi

are N × 1 column vectors, formed from a concatenation of the ani and bni coefficients

from Equation 1.3 respectively. From Equation 1.4, it can be seen that matrix R is

a transfer matrix relating the fields to the left and the right of the medium, while

matrix S, which is commonly known as the scattering matrix, relates the outgoing

33



Chapter 1: Introduction

and ingoing fields. The matrix R has found use in many theoretical studies for prop-

agating light through discretised layers of the scattering media, but matrix S, which

consists of the transmission and reflection matrix of the scattering medium, is easier

to measure experimentally. Regardless, a transformation exists between these two

matrices [76], which implies they contain the same information. It is worth noting

that though a plane wave basis has been used to describe the incident and outgo-

ing fields in Equation 1.3, the choice of basis is by no means unique. The incident

and output fields, for example, can also be described by a set of independent point

sources and detectors. As such, the elements of the transmission matrix depend on

the basis in which the matrix has been defined.

The transmission and reflection matrices can be defined in the context of Equation

1.4, as matrices that relate an input field to its transmitted and reflected output

speckles respectively. Based on time-reversal invariance, it can be shown that the

matrix S is unitary and symmetric, which in turn implies that rL = rR = r and

tL = t>R = t [76], where the notation A> denotes the transpose of the matrix A. The

discussion in the rest of this section will focus mainly on the transmission matrix,

though it is useful to note that energy conservation implies a relationship between

the transmission and reflection matrices.

The eigenvalues of the Hermitian matrix T = t†t, or equivalently the square of

the singular values of t, have been widely studied. Here, A† denotes the conjugate

transpose of the matrix A. These eigenvalues can be interpreted as the intensity

transmittance of their corresponding eigenvectors. For scattering media in the dif-

fusive regime, where the thickness of the scattering medium is large enough such

that light is multiply scattered but is not confined within the material, the eigen-

values of T were found to follow a bimodal distribution with a large number of

eigenvalues close to zero, but also with a small number of eigenvalues close to one

[77, 78]. The eigenvalues close to one correspond to eigenvectors that are commonly

known as “open” eigenchannels, as these eigenvectors can theoretically be trans-

mitted through the scattering medium with close to no loss. Conversely, “closed”

eigenchannels have eigenvalues that are approximately zero and are fully reflected
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by the scattering medium. This phenomenon is exciting for imaging, as it suggests

the possibility of imaging through multiply scattering media of arbitrary thicknesses

in the diffusive regime.

Experimentally, the bimodal distribution of transmission eigenvalues has been demon-

strated via the use of elastic waves travelling in a flat disordered waveguide [79]. In

the optical regime, attempts have also been made to observe and propagate these

eigenchannels through scattering media in transmission [80, 81, 82] and reflection

[83]. Though significant transmission enhancement was achieved, the eigenchan-

nels with close to unity transmission have not been observed in the optical regime.

Practically, the fully transmitting eigenchannels are difficult to obtain because of

incomplete control in the experiments, as not all of the independent input and

transmitted modes are measured. This could be, for example, due to a finite illu-

mination or collection numerical aperture or due to vignetting in the system. The

statistical properties of transmission matrices measured under such circumstances

were studied by Goetschy and Stone [84], using what they referred to as a “filtered

random matrix ensemble”, where only access to part of the full transmission matrix

was available. It was found that the eigenchannels with transmittances close to one

were highly sensitive to incomplete control, and consistent with experiments, these

eigenchannels would not be present even if a small number of input or transmitted

modes were not measured. In the extreme case, when only a small number of input

and/or transmitted modes were acquired, correlations in the transmission matrix

would become negligible and the singular values, normalised by their mean value,

follow the Marcenko-Pastur law [85], which describes the distribution of singular

values for uncorrelated Gaussian matrices. In the special case of square matrices,

the Marcenko-Pastur law is also known as the “quarter-circle law”. As such, the

observation of the eigenchannels with unit transmission requires the measurement

of all independent modes, which corresponds to a strikingly large transmission ma-

trix that is difficult to measure in practice. As an indication of scale, a scattering

sample with an illuminated surface area, A, contains N = 2πA
λ20

independent modes

[86]. Consequently, an illuminated area of 1mm2 contains about 15 million modes.
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Despite the difficulty in accessing the theoretically predicted “open” eigenchannels,

the measured transmission matrix can still be useful for imaging through scattering

media. Since the scattered fields for a single instance of disorder are determinis-

tic, once the transmission matrix is measured, the fields incident on the scattering

medium can be computed from the transmitted fields through an inversion of the

transmission matrix [87]. The transmission matrix can be obtained by measuring

the transmitted speckle field over a set of independent input fields. One of the

first experimental measurements of transmission matrices in the optical regime was

made by Popoff et al. [81]. Full-field phase-shifting interferometry [88] was used

to determine the amplitude and phase of the complex field, utilising speckle from

a static portion of the wavefront as reference so that no additional reference arm

is required in the setup. Later on, other measurement schemes were also proposed

[82, 89, 90], mainly with variations in the interferometric methods used or the spa-

tial basis used to obtain the transmission matrix. The works mentioned so far have

measured monochromatic transmission matrices, which relate incident and trans-

mitted fields of optical waves for a single wavelength and polarisation state, but

other types of transmission matrices have also been defined and measured. For ex-

ample, if polarisation elements are present, the vector transmission matrix can be

measured, as was done by Tripathi et al. [91]. Katz et al. measured an acousto-optic

transmission matrix [92], which relates the incident optical field to the ultrasonically

tagged transmitted field that has been frequency-shifted, and used it to focus inside

a scattering medium. Chaigne et al. demonstrated focusing onto several absorbers

using the photoacoustic transmission matrix [93], which describes the relationship

between the incident optical field and the acoustic wave detected by the ultrasonic

transducers. Spatio-temporal control of light can also be obtained when a spectrally

resolved [94, 95] or time-resolved transmission matrix is measured [96, 97].

Once the transmission matrix is measured, the scattering medium can effectively

be used as a lens [98, 99, 100]. By placing the scattering medium with a known

transmission matrix in between the test object and the imaging system, Choi et

al. [100] showed that a larger field of view as well as enhanced resolution can be

achieved. The enlarged field of view is due to light from outside of the field of
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view, as defined by the imaging system, being scattered into the collection angle.

Similarly, enhanced resolution is also caused by scattering, which re-directs highly

oblique plane wave components, that would otherwise have not been collected, into

the collection angle of the imaging system. These plane wave components correspond

to high frequency information of the object [101], so their collection results in an

increase in spatial resolution. Sub-diffraction limited imaging has also been achieved

[99] by placing the scattering medium in the near-field of the object, thereby enabling

the propagation of the evanescent waves to the far-field. Other than these advan-

tages, using the scattering medium as a lens could also simplify imaging systems

such as in endoscopes, where the optical fibre itself could be used as a lens [102, 103].

As mentioned above, the techniques that have been previously discussed can be

described using the transmission matrix. Assuming that all of the transmitted light

is collected and that there is negligible reflection, the shaped wavefronts used to form

a focus in optical phase conjugation and wavefront shaping techniques are identical,

and correspond to the complex conjugate of a column in the transmission matrix.

The elements in this column are the complex amplitudes of the output speckle field

originating from the target point. On the other hand, speckle correlation techniques

make use of correlations that are present within the transmission matrix. As such,

it can be seen that the use of the transmission matrix is a more general approach

for imaging through scattering media. Unlike optical phase conjugation and wave-

front shaping techniques, once the full transmission matrix has been measured, the

optimal wavefront for focusing onto any target position can be computed from the

transmission matrix without the need for any additional measurements, as long as

the scattering medium remains static. Moreover, imaging using the transmission

matrix does not depend on the memory effect, the range of which usually limits the

field of view in speckle correlation techniques. A new measurement of the transmis-

sion matrix is necessary, however, whenever the instance of disorder is changed. In

the case of dynamic scattering media, the measured transmission matrix is only valid

within the speckle decorrelation time of the scattering medium, which for in-vivo

tissues is typically on the order of a millisecond [104, 105]. In addition, at least for

purely optical techniques, access to both sides of the scattering medium is required
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for the measurement of the transmission matrix, which is a significant barrier to the

application of these techniques to in-vivo samples. Correlations between the reflec-

tion and transmission matrix hint at a possible way of estimating the transmission

matrix from reflection measurements [106], but this has yet to be achieved. Last

but not least, in most practical applications, the goal is to image within rather than

through scattering media. Though imaging up to a certain depth can be approxi-

mated as imaging through a scattering slab of the same thickness, the effect of light

propagating backwards from deeper planes has not been accounted for.

Computational Approaches

Computational approaches have also been applied to image objects hidden behind

scattering media. Techniques in machine learning have been successfully used in

multiple works [107, 108, 109], but these methods are usually computationally-

intensive and need large quantities of representative datasets. Moreover, as the

algorithms basically function as “black boxes”, the results are often difficult to in-

terpret. Tajahuerce et al [110] proposed the use of a single pixel camera for imaging

through scattering media. With this technique, the spatial information of the ob-

ject is encoded via a sequential spatial modulation of the incident illumination before

it propagates through the scattering medium. As such, intensities measured by a

single pixel camera, each corresponding to a specific known spatial modulation of

the incident illumination, can then be used to reconstruct an image of the hidden

object. In contrast, for a spatially resolved camera, the spatial information is ac-

quired directly by a multi-pixel detector, and only the scattered intensity can be

observed. This technique is interesting as it does not require pre-calibration, and is

also independent of the particular instance of disorder, which implies that it would

work for both static and dynamic scattering media. Moreover, the use of single pixel

cameras, such as photodiodes or spectrometers, raises the possibility of cost-efficient

setups that can be easily adapted to include additional functionalities, such as hy-

perspectral imaging. One drawback, however, is that access to the illumination end

of the object is required, and this is not usually available in practice. In addition,

the number of measurements required for image reconstruction scales as N2 for an

image size of N × N , which implies a significant increase in acquisition time for
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increased resolution over the same field of view.

Polarimetric Imaging Methods

As can be seen from this discussion, most of the proposed techniques have focused

on imaging in intensity. To date, there have been only a handful of works that

have attempted to utilise scattered light in the recovery of both polarimetric and

spatial information of objects hidden behind scattering media. The existing methods

[91, 111] are based on the measurement of a transmission matrix, which as discussed

previously, has to be pre-calibrated for the specific sample and needs access to both

sides of the scattering medium. These requirements diminish the utility of these

techniques in practical imaging applications.

Research Direction

Motivated by the benefits of polarimetric imaging and the lack of techniques avail-

able for it at greater depths, this work set out to find a solution for polarimetric

imaging through scattering media. The single pixel camera solution proposed by

Tajahuerce et al. [110] was particularly attractive, in view of its advantages that

have been pointed out above. In terms of its drawbacks, the increase in acquisition

time is alleviated by the availability of high speed DMDs [35] which can be used

for the spatial modulation of the incident illumination, alongside photodiodes which

can operate at high acquisition rates [112]. Furthermore, single pixel imaging is

compatible with compressive sensing [113, 114], which reduces the number of mea-

surements required to reconstruct the same image. On the other hand, the required

access to one side of the object needs further investigation, and research to address

this problem is still ongoing. For example, Escobet-Montalbán et al. [115] used tem-

poral focusing to project Hadamard patterns at a selected plane within a sample,

such that single pixel imaging can be used with multiphoton fluorescence microscopy.

Single pixel polarimetric imaging has previously been demonstrated by Soldevila

et al. [116] without a scattering medium present. The polarimetric information

decays as a function of the transport mean free path, compared to the decay of

ballistic light which decays exponentially as a function of mean free path [16, 117].
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Given the high scattering anisotropy in biological tissues (i.e. g close to 1), the

transport mean free path is typically much longer than the mean free path. As

such, polarisation information persists over longer length scales than the decay of

ballistic light. Combining polarimetry with single pixel imaging, it is expected that

polarimetric images can be recovered at the same length scales.

As such, this thesis is directed at investigating the feasibility of single pixel po-

larimetric imaging through scattering media, a technique which would open up pos-

sibilities for non-invasive, label-free, in-vivo polarimetric imaging through dynamic

scattering media.

1.2 Thesis Structure and Overview

This section describes the layout of this thesis. Chapter 2 provides the necessary

background knowledge, such as discussing the basics of single pixel imaging and

polarimetry. Chapter 3 follows by introducing a theoretical model for single pixel

polarimetric imaging, and proposes an imaging solution which is investigated using

simulations based on a 2D Green’s tensor formalism. To test the method experi-

mentally, two types of scattering media were used - scattering phantoms made of

microspheres embedded in epoxy resin and slices of chicken breast tissue. These

samples are described in Chapter 4, which explains the experimental methods used

for this work, including the implementation and calibration of the optical system, as

well as sample preparation procedures. The characterisation of the optical system

is then discussed in Chapter 5. The work culminates in Chapter 6, which presents

the imaging results of a hidden test object obtained using the proposed method.

Finally, conclusions are made in Chapter 7, with an examination of the limitations

of the technique and the potential for future developments.
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Background

Having elucidated the motivation and aims of this work in Chapter 1, the current

chapter introduces the relevant background knowledge required for the understand-

ing of this thesis. Specifically, Section 2.1 gives a description of Maxwell’s equations,

which is fundamental to the description of scattered fields that is used in the nu-

merical simulations conducted as part of this work. Moreover, since this thesis is

concerned with polarimetric imaging, an introduction to the polarisation of light,

along with the relevant tools used to describe and analyse it, is provided in Section

2.2. Key concepts and terminology related to scattering that are used in this work

are then presented in Section 2.3, followed by an introductory description of single

pixel imaging in Section 2.4. Finally, the chapter concludes with Section 2.5, which

provides an outline of the assumptions made in this work.

2.1 Maxwell’s Equations

Light is an electromagnetic wave and as such, light scattering is fundamentally de-

scribed by Maxwell’s equations, which have been well-discussed in many electromag-

netism textbooks, such as [118, 119]. In this section, a brief overview of Maxwell’s

equations will be provided, along with some of the equations derived from it that

are relevant for this work.
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Maxwell’s equations in their macroscopic and differential form can be written as

∇ · ~D(~r, t) = ρf (~r, t) (2.1)

∇ · ~B(~r, t) = 0 (2.2)

∇× ~H(~r, t)− ∂ ~D(~r, t)

∂t
= ~Jf (~r, t) (2.3)

∇× ~E(~r, t) +
∂ ~B(~r, t)

∂t
= 0 . (2.4)

Equations 2.1 to 2.4, in order, are Gauss’s law for the electric field, Gauss’s law

for the magnetic field, Ampère-Maxwell’s law and Faraday’s induction law. The

vector fields in these equations are the electric field ( ~E), displacement current ( ~D),

magnetic flux density ( ~B), magnetic field ( ~H), and current density ( ~Jf ), while ρf

denotes the free charge density. In order to provide a complete description of the

fields, Maxwell’s equations need to be supplemented by the constitutive relations

~D(~r, t) = ε(~r) ~E(~r, t) (2.5)

~B(~r, t) = µ(~r) ~H(~r, t) (2.6)

~Jf (~r, t) = σ(~r) ~E(~r, t) , (2.7)

where σ denotes the conductivity, and ε = ε0εr is the material permittivity, ex-

pressed in terms of the vacuum permittivity, ε0, and the relative permittivity, εr. In

addition, µ = µ0µr denotes the permeability, similarly expressed in terms of the vac-

uum permeability, µ0, and the relative permeability, µr. For an isotropic medium,

as assumed here, σ, ε and µ are scalars, but it should be noted that in general, these

quantities are tensors.

Under the assumption that the fields are time-harmonic, the electric field can be

expressed as

~E(~r, t) = ~E(~r) exp(−iωt) (2.8)

where ω denotes the angular frequency of the electromagnetic wave. The other

fields, ~D, ~B, ~H and ~Jf , can also be written in a similar manner. This assumption is
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by no means limiting, since arbitrary functions can be formed from a superposition

of harmonic functions. Furthermore, when no sources are present, ~Jf and ρf are

zero. The insertion of these assumptions into Maxwell’s equations (Equations 2.1 -

2.4) yields

∇ · ~D(~r) = 0 (2.9)

∇ · ~B(~r) = 0 (2.10)

∇× ~H(~r) + iω ~D(~r) = ~0 (2.11)

∇× ~E(~r)− iω ~B(~r) = ~0 . (2.12)

Taking the curl of Equation 2.12, one obtains

∇×∇× ~E(~r) = iω(∇× ~B(~r)) . (2.13)

An alternative expression for the right side of Equation 2.13 can be found using

Equation 2.11. Assuming a non-magnetic insulating dielectric medium, such that

σ = 0 and µ(~r) = µ0, Equation 2.11 can be written as

∇× ~B(~r) = −iµ0ωε0εr(~r) ~E(~r) . (2.14)

Substituting Equation 2.14 in Equation 2.13 yields [120]

∇×∇× ~E(~r)− k2 ~E(~r) = iω~j(~r) (2.15)

where ~j(~r) = −iωε0µ0(εr(~r)− 1) ~E(~r), k = 2π
λ

= ω
c

is the free space wavevector and

c = 1√
µ0ε0

is the speed of light. In a typical electromagnetic scattering problem that

considers a configuration of scatterers, the spatial variation of εr caused by the spa-

tial distribution of the scatterers contributes directly to ~j(~r). The computation of

the resulting fields is then equivalent to finding the electric field, ~E(~r), that satisfies

Equation 2.15 for the specified scatterer configuration.

Equation 2.15 is a linear inhomogeneous equation that can be solved by consid-
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ering the Green’s function

∇×∇×Ge(~r, ~r
′
)− k2Ge(~r, ~r

′
) = Iδ(~r − ~r ′) (2.16)

where Ge(~r, ~r
′
) can be interpreted as the electric field at ~r from a point source at

~r
′
. Given the linearity of Equation 2.15, the total field, ~E(~r), can be thought of as

a superposition of the contributions from the individual point sources making up

~j(~r), such that the general solution to Equation 2.15 can be formulated in terms of

Ge(~r, ~r
′
) as

~E(~r) = ~Einc(~r) + iω

∫
V

Ge(~r, ~r
′
)~j(~r

′
) d~r

′
, (2.17)

where ~Einc(~r) is the solution to the homogeneous equation obtained when no scat-

terers are present (i.e. ~j(~r) = ~0 in Equation 2.15). For scatterers in free space, which

is the geometry considered in this work, the Green’s function has a form given by

[120]

Ge(~r, ~r
′
) =

(
I +

1

k2
∇∇

)
exp(ik|~r − ~r ′|)

4π|~r − ~r ′ |
. (2.18)

Equation 2.17 presents a means of computing the scattered fields from randomly

positioned particles. Techniques utilising these equations [121, 122] are considered

later in Section 3.2.

Another way of computing the scattered fields is through the use of the vector

Helmholtz equation. Through a standard vector identity [123] and the use of Equa-

tion 2.9, the left side of Equation 2.13 can be written as

∇×∇× ~E(~r) = ∇(∇ · ~E(~r))−∇2 ~E(~r))

= −∇2 ~E(~r)) .
(2.19)

Making the further assumption that the scattering environment is piece-wise ho-

mogeneous, so that ε(~r) = ε is independent of ~r within each homogeneous region,

Equations 2.19 and 2.14 can be substituted into Equation 2.13 to yield the vector

Helmholtz equation, which is given by

∇2 ~E(~r) + (nk)2 ~E(~r) = 0 , (2.20)
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where n =
√
εrµr =

√
εr is the medium’s refractive index. Equation 2.20 holds in

each of the homogeneous regions in the scattering environment with the appropriate

value of n. For an isotropic medium, n is a scalar, and the scalar Helmholtz equation

can be used to describe each component of the field. This can be written as

∇2 Ei(~r) + (nk)2 Ei(~r) = 0 , (2.21)

where Ei denotes a component of the field.

It can be shown that if an arbitrary scalar field, Ui, fulfils the scalar Helmholtz

equation in Equation 2.21, then the vector fields, ~M and ~N , obtained as

~M(~r) = ∇× (~rUi(~r))

~N(~r) =
∇× ~M(~r)

k
,

(2.22)

fulfil the vector Helmholtz equation in Equation 2.20 [124]. As such, for homoge-

neous isotropic media, the problem of finding a vector field that fulfils Equation 2.20

can be simplified to finding a scalar solution to Equation 2.21. As will be discussed

in Section 3.2, by first finding a complete set of scalar basis functions that satisfy

Equation 2.21 for the considered geometry (for spherical scatterers in a homogeneous

background these consist of Legendre and spherical Bessel functions), the related set

of vector basis functions that satisfy Equation 2.20 can be computed. These vector

basis functions can then be used to describe the fields in the interior and exterior

of the scatterer. The fields in the interior and exterior of the scatterer can then be

described as a linear combination of these vector basis functions, with the related

mode coefficients determined by a matching of the appropriate boundary conditions

[124]. In this way, the scattered fields from spherical scatterers can be computed.

Though spherical particles have been considered, this technique can also be adapted

for non-spherical particles [125, 126].
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2.2 Polarisation

Being an electromagnetic wave, propagating electric and magnetic fields of light os-

cillate perpendicularly to its direction of travel. Polarisation is a property of the

wave, describing the evolution of the fields with time. This section does not attempt

to provide a complete theoretical treatise, but focuses on the key concepts related to

the polarisation of light, which will be used consistently throughout in this thesis.

For further details, the reader is referred to the many excellent textbooks that have

been written on the topic (e.g. [127, 128]).

Consider monochromatic light travelling in the z direction, with an electric field

oscillation as depicted in Figure 2.1. A theoretical observer looking along the z axis

towards the direction of the source will observe the tip of the electric field vector

trace out certain shapes as the wave propagates. Examples of possible shapes are

plotted at the bottom of Figure 2.1. If the oscillations are confined to a plane that

is oriented at angle θ from the x axis, then the light is said to be linearly polarised

at θ (see Figure 2.1(a)). In particular, when θ = 0◦, the oscillations of the field

are confined to the x direction, which is commonly known as horizontally polarised

light. Conversely, the oscillation plane for vertically polarised light is oriented at

θ = 90◦, such that the field only oscillates in the y direction. Alternatively, if the

oscillations rotate around the propagation direction as the wave travels, such that

the tip of the field vector traces out a circle in the plane transverse to the direction of

propagation (see Figure 2.1(b)), then the light is said to be circularly polarised. This

rotation can be clockwise or anti-clockwise, and the corresponding light is known as

right and left circularly polarised light respectively. More generally, however, light

is elliptically polarised, with the tip of the electric field vector tracing out an ellipse

with ellipticity angle ε and θ (see Figure 2.1(c)). It is straightforward to see that

linear and circular polarisation states are special cases of elliptically polarised light.

Similar to circularly polarised light, the rotation of light can occur in a clockwise or

anti-clockwise manner, and the resulting light is termed as right and left elliptically

polarised light. Finally, it is worth noting that for non-monochromatic light, it is

possible that the electric field oscillates in a completely random manner, in which
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case the resulting light is said to be unpolarised.

Figure 2.1: The top figure depicts a linearly polarised electromagnetic wave travelling
in the z direction, and the four plots on the bottom are examples of common polarisation

states.

The diagrams shown in Figure 2.1 are useful for an intuitive understanding of polar-

isation. Nevertheless, mathematical tools are required for a quantitative description

of the polarisation state. In this respect, Jones and Mueller calculus have been

widely used and are thus discussed below.

2.2.1 Jones Vectors

Consider, again, the same light wave propagating in the z direction, as depicted

in the top of Figure 2.1. The electric field vector at any space and time can be

described as [127]

~E(z, t) =
(
Ex î+ Ey ĵ

)
exp (i(kz − ωt)) (2.23)

where î and ĵ are unit vectors in the x and y directions respectively, while Ex and

Ey are complex numbers describing the components of the electric field along the

same directions. The polarisation of this wave can be concisely described in terms
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of the complex Jones vector, which is defined as [127]

~E =

Ex
Ey

 . (2.24)

It should be pointed out that this representation of the field is limited to a single

propagating plane wave. Plane waves travelling along directions other than z can

also be described by choosing a reference frame with one of the axes along the

propagation direction. In this work, as well as for the rest of this section, it is

assumed that the light beam only has, at most, a small angular spread, such that

it can be approximated as a collimated beam. As such, this limitation is not of

consequence for this work. Note that, nonetheless, it is possible to extend this Jones

vector formalism into three dimensions, and for arbitrary field distributions - a full

discussion can be found in Ref. [129].

2.2.2 Coherency Matrices

Implicit in the definition of Jones vectors is the assumption that the light being

described is fully polarised and coherent. In the case of partially polarised light,

where Ex and Ey are not completely correlated, Jones vectors are unable to give a

full description of the polarisation state, except at any specific point in time. As

such, other representations of the field are required to describe partially (and fully)

polarised light. One suitable representation is the coherency matrix, which is defined

as [127]

CM = 〈 ~E ⊗ ~E†〉t =

〈ExE∗x〉t 〈ExE∗y〉t
〈EyE∗x〉t 〈EyE∗y〉t

 , (2.25)

where ⊗ denotes the Kronecker product, otherwise known as the direct product, ~E†

denotes the conjugate transpose of the Jones vector, ~E, and A∗ denotes the complex

conjugate of A. Also, 〈...〉t denotes a temporal average, over a time scale much longer

than the fluctuations of the field. In the case of fully coherent light, the quantities

within 〈...〉t are constant with time and the temporal averaging may be dropped. The

diagonal elements of CM are real quantities, and describe the intensity (I ∝ 〈| ~E|2〉t)
of the x and y components of the light beam. The off-diagonal elements, on the
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other hand, are generally complex and they describe the cross-correlation between

the x and y components of the light beam. A coherency vector, consisting of the

elements of CM , can also be defined as [127]

~C = 〈 ~E ⊗ ~E∗〉t =


〈ExE∗x〉t
〈ExE∗y〉t
〈EyE∗x〉t
〈EyE∗y〉t

 . (2.26)

2.2.3 Stokes Vectors

In spite of the benefits provided by coherency matrices and vectors, their complex

elements make it cumbersome to directly measure them experimentally. The Stokes

vector formulation provides a more convenient means of describing the polarisation

state of light in terms of real quantities that are measurable in the lab, whilst also

allowing the description of partially polarised light.

A Stokes vector consists of four real parameters that have the dimensions of in-

tensity, and is defined as [127]

~S =


S0

S1

S2

S3

 =


〈|Ex|2〉t + 〈|Ey|2〉t
〈|Ex|2〉t − 〈|Ey|2〉t

2〈Re{ExE∗y}〉t
−2〈Im{ExE∗y}〉t

 =


Ix + Iy

Ix − Iy
I45 − I−45

Ir − Il

 , (2.27)

where the elements of the final vector are, respectively, the total intensity of the

beam, the difference in intensities between components polarised in the x and y di-

rections, the difference in intensities between the components polarised at ±45◦ and

the difference between the intensities of the left and right circularly polarised compo-

nents of the beam. This formulation suggests that these parameters can be extracted

through a simple series of laboratory measurements that are designed to determine

the intensity of the relevant beam components. For example, S1 = Ix − Iy can be

obtained by taking the difference between the two intensities transmitted through

an ideal linear polariser with its transmittance axis oriented in x and y. Further-
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more, aside from being able to describe partially polarised light, Stokes parameters

allow the fraction of polarised light in the beam to be quantified through the degree

of polarisation, P, which is defined as [127]

P =

√
S2

1 + S2
2 + S2

3

S0

. (2.28)

For fully unpolarised light, intensity measurements across different polarisation

states are equal since no polarisation state is preferred. As such, S1 = S2 = S3 = 0

and P = 0. In contrast, considering a specific example of fully linearly polarised

light at 45◦, S2 = 1 while S1 and S3 are equal to zero, such that P = 1. It can be

easily verified that the same result of P = 1 is obtained when considering completely

polarised light with other polarisation states. Values of P other than 0 and 1 corre-

spond to partially polarised light.

The degree of polarisation specific to linear or circular polarisation states can also

be defined as [128]

PL =

√
S2

1 + S2
2

S0

PC =
S3

S0

,

(2.29)

where PL and PC are the degree of linear polarisation (DOLP) and the degree of

circular polarisation (DOCP) respectively.

Polarisation states can also be visualised by plotting the Stokes parameters, S1,

S2 and S3, along the Cartesian axes. Fully polarised states (i.e. P = 1) correspond-

ing to the same beam intensity, S0 =
√
S2

1 + S2
2 + S2

3 , lie on a sphere with a radius of

S0. This sphere, which is illustrated in Figure 2.2, is known as the Poincaré sphere

[127]. As examples, points on the sphere corresponding to the x, y and ±45◦ linearly

polarised states, as well as right and left circularly polarised light, are indicated in

Figure 2.2. All linearly polarised states lie along the equator of the Poincaré sphere,

as indicated by the blue line in Figure 2.2, while the right and left circularly po-

larised states lie at the north and south pole of the sphere respectively. The rest

of the sphere surface describes fully polarised elliptical states. Partially polarised
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polarisation states (i.e. P < 1) can also be described by the Poincaré sphere as

points within the sphere. The Poincaré sphere, formed of the Stokes parameters, is

a simple yet powerful graphical tool for the understanding of polarisation and its

evolution as light passes through different media.

Figure 2.2: A diagram of the Poincaré sphere, showing the x, y and ±45◦ linearly
polarised states, as well as right and left circularly polarised light.

The form of Equation 2.27 suggests that there is a relationship between Stokes vec-

tors and their related coherency matrix/vector representation. Indeed, the elements

of the Stokes vector can be related to the coherency matrix as

CM =
1

2

3∑
j=0

Sjσj , (2.30)

where

σ0 =

1 0

0 1

 , σ1 =

1 0

0 −1

 , σ2 =

0 1

1 0

 , σ3 =

0 −i
i 0

 , (2.31)

are the well-known Pauli matrices. As such, it can be seen that the elements of

the Stokes vector are the coefficients in the decomposition of the related coherency

matrix into the matrices σj. Similarly, a conversion exists between the coherency

and Stokes vectors, which can be written as

~S = Γ~C , (2.32)
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where

Γ =


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 . (2.33)

As such, Stokes vectors can be related to the coherency matrix/vector representa-

tion, which in turn can be derived from the associated Jones vectors when light is

fully polarised and coherent. For the case of partially polarised or incoherent light,

the time-averaged elements of the Jones vector can be related to the coherency ma-

trix/vector, as described previously in Equations 2.25 and 2.26. Equation Table 2.1

shows examples of how common polarisation states that are fully polarised can be

expressed in the different representations.
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olarisation

Jones Coherency matrix Stokes

Linearly polarised

at angle θ
e0

cos θ

sin θ

 I0

 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

 S0


1

cos 2θ

sin 2θ

0



Right circularly

polarised
e0

1

i

 I0

1 −i
i 1

 S0


1

0

0

1



Elliptically

polarised
e0

cos θ cos ε− i sin θ sin ε

sin θ cos ε+ i cos θ sin ε

 I0

 1 + 2 cos 2θ cos 2ε sin 2θ cos 2ε− i sin 2ε

sin 2θ cos 2ε+ i sin 2ε 1− 2 cos 2θ cos 2ε

 S0


1

cos 2θ cos 2ε

sin 2θ cos 2ε

sin 2ε



Unpolarised - I0

1 0

0 1

 S0


1

0

0

0


Table 2.1: Examples of common polarisation states. e0 denotes the a scalar complex amplitude and I0 represents the light intensity,

while the definition of θ and ε follows that of Figure 2.1.
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2.2.4 Jones and Mueller matrices

When light interacts with matter, its polarisation state may be altered. The way

that this effect is described depends primarily on the mathematical representation

chosen to express the polarisation state. Here, only linear optical effects are consid-

ered.

As described previously, fully polarised light can be described in terms of Jones

vectors. Consider an incident beam that is described by a Jones vector, denoted as

~Ein. After propagation through a spatially homogeneous optical element, the po-

larisation of the resulting beam can be described by a second Jones vector, denoted

as ~Eout. The relationship between the two Jones vectors can be described in terms

of the 2× 2 Jones matrix, T, such that

~Eout = T ~Ein . (2.34)

In this way, the beam can be propagated through a train of N optical elements

with known Jones matrices as ~Eout = TNTN−1...T2T1
~Ein, in order to determine

the output polarisation state. Note that the exact physical mechanism affecting

the polarisation state is inconsequential in this computation; the optical devices are

treated as “black boxes” with the Jones matrix relating the input and output po-

larisation states.

Using Equation 2.25, it can be shown that the propagation of coherency matri-

ces through a non-depolarising optical element with the Jones matrix, T, can be

described as

Cout
M = TCin

MT† , (2.35)

where the superscripts “in” and “out” denote input and output polarisation states.

Similarly, it can be shown that coherency vectors can be propagated through optical

elements as

~Cout = (T⊗T∗)~Cin . (2.36)
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Given the relationship between coherency and Stokes vectors in Equation 2.32, it is

straightforward to show that Stokes vectors can be propagated according to

~Sout = M~Sin , (2.37)

where M is the 4 × 4 Mueller matrix of the optical element, which can be related

to the associated Jones matrix as

M = Γ(T⊗T∗)Γ−1 . (2.38)

It is worth noting that depolarising systems cannot be described by a determinis-

tic Jones matrix, and as such, Equations 2.35, 2.36 and 2.38 generally don’t hold.

Nevertheless, Equation 2.37 can still be used to describe propagation through de-

polarising systems. Table 2.2 shows examples of the Jones and Mueller matrices of

ideal polarimetric elements. The linear polariser and waveplate have been specified

with their transmission and fast axes at an angle θ = 0◦. Their corresponding ma-

trices for an arbitrary angle to the x axis, α, can be obtained by using the relevant

Jones or Mueller rotator matrices as

T(θ = α) = RJ(−α)T(θ = 0◦)RJ(α)

M(θ = α) = RM(−α)M(θ = 0◦)RM(α)
(2.39)

where RJ and RM respectively denote the Jones and Mueller rotator matrices that

are specified in Table 2.2.
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Jones Mueller matrix

Linear polariser with transmission

axis at angle θ = 0◦

1 0

0 0




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



Waveplate with fast axis at angle

θ = 0◦ with retardation ϕ

cos ϕ
2

+ i sin ϕ
2

0

0 cos ϕ
2
− i sin ϕ

2




1 0 0 0

0 1 0 0

0 0 cosϕ sinϕ

0 0 − sinϕ cosϕ



Depolariser -


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



Rotator, rotating the co-ordinate axes

counter-clockwise by angle θ

 cos θ sin θ

− sin θ cos θ




1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1


Table 2.2: Examples of Jones and Mueller matrices for some ideal polarimetric elements.
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2.2.5 Polarimetry

Polarimetry is the measurement and analysis of polarisation, and it has been ex-

ploited in many applications, as highlighted in Chapter 1. Two categories of po-

larimetry can be identified, namely Stokes and Mueller polarimetry. In this section,

the system models for both of these categories are introduced.

In Stokes polarimetry, the aim is to obtain the Stokes vector related to the polari-

sation state of the measured light. This can be done by measuring the transmitted

intensity as the beam is passed through different polarimetric elements, otherwise

known as polarisation analysers. Let di be the intensity measured when light is

passed through a polarisation analyser that measures the polarisation state with a

Stokes vector denoted as ~a>i = [1, ai,1, ai,2, ai,3]>/2, where ~ai has been normalised to

ensure that the analyser is passive (i.e. 0 ≤ di ≤ S0). In fact, di is the projection of

the incident Stokes vector, ~S, on the analysed polarisation state. When NA polar-

isation analysers are used, the related intensities measured can be concatenated in

a NA × 1 vector, denoted as ~D, which in turn can be related to the incident Stokes

vector according to

~D = A~S . (2.40)

The matrix A is an NA × 4 instrument matrix describing the polarisation state

analyser (PSA), with the ith row of A corresponding to the Stokes vector describing

the ith analysed polarisation state (i.e. ~ai). From the linear equation in Equation

2.40, it can be seen that at least four analysed polarisation states are required to

determine the four unknown Stokes parameters. Fewer polarisation analyser states

will result in an underdetermined set of equations, which does not have a unique

solution for the unknown Stokes vector. More than four analyser states can be used

to produce an overdetermined set of equations, which in the case of noise could be

useful for obtaining a least-squares estimate of the incident Stokes vector. As such,

with a sufficient number of analysed polarisation states (that are known beforehand),

it is theoretically possible to establish the Stokes vector of the incident beam through

a matrix inversion, written as

~S = A−1 ~D . (2.41)
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If the matrix A is overdetermined or poorly conditioned (see below for a discussion

on matrix conditioning), a least squares solution can, instead, be found by replacing

the matrix inversion with the Moore-Penrose pseudo-inverse [130]. Various archi-

tectures for the PSA exist in literature, and will be described later in Section 4.1.

Mueller polarimetry, on the other hand, measures the full Mueller matrix, M, of

a test sample. This is done through the inclusion of a polarisation state generator

(PSG), which generates incident illumination with different known input polarisation

states. Various ways of generating the set of input polarisation states are discussed

later in Section 4.1. The transmitted or reflected polarisation state is then collected

and analysed by a PSA. For the jth input polarisation state, the exiting Stokes

vector is given by

~S = M~wj , (2.42)

where ~wj is the Stokes vector corresponding to the jth input polarisation state. To

determine the 16 elements in the Mueller matrix, at least 4 input polarisation states

are, therefore, required, so that there are 16 simultaneous equations which form a

fully determined set of linear equations. When NG input polarisation states and NA

analysed polarisation states are used, the detector intensities can be expressed as

D = AMW , (2.43)

where the ith row of the NA × 4 matrix A is the Stokes vector describing the ith

polarisation analyser (i.e. ~ai) and the jth column of the 4 × NG matrix W is the

jth input polarisation state (i.e. ~wj). The jth column of D then corresponds to

the detector intensities measured by the PSA for the jth input polarisation state.

Similarly to Equation 2.41, the Mueller matrix can be obtained as

M = A−1DW−1 . (2.44)

The data processing applied to obtain the Stokes vector in Stokes polarimetry, or the

Mueller matrix in Mueller polarimetry, amplifies existing noise. The degree of noise

amplification is often estimated using the condition number of the matrix, κ [131,
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132]. For an arbitrary matrix A, κ can be defined as κ = ||A−1||2||A||2, with ||...||2
denoting the induced 2-norm of a matrix. A matrix with a low condition number

is said to be well-conditioned, and the related matrix inverse can be reasonably

estimated. The minimum condition number possible for arbitrary matrices is 1, in

which case the maximum errors in the estimated quantity (i.e. ~S or M) is no worse

than the errors in the input dataset (i.e. the measured detector intensities). On the

other hand, matrices with large condition numbers are said to be ill-conditioned,

and noise in the data is likely to result in large errors in the estimated parameter.

It should be added that since the elements of physical instrument matrices, A and

W, cannot be arbitrarily chosen, the minimum possible condition number for the

instrument matrices is actually larger than 1 [133, 134]. To minimise errors in the

estimated Stokes vector or Mueller matrix, it is important to consider architectures

with low condition numbers in the design of PSG and PSA, as will be seen in Section

4.1.

2.2.6 Physicality of the Mueller Matrix

Physically realisable Mueller matrices form only a subset of all possible 4 × 4 real

matrices. A physically realisable Mueller matrix is one that, for any given input

Stokes vector, outputs a physically realisable polarisation state, which in turn satis-

fies physical constraints such as having a non-negative total intensity and a DOP≤ 1.

Unfortunately, the estimate of the Mueller matrix computed by Equation 2.44 is not

necessarily physically realisable. This is particularly true in the presence of noise

which, as previously discussed, causes errors in the computed Mueller matrix that

are potentially amplified by the data processing procedure. Many necessary condi-

tions for a Mueller matrix to be physically realisable have been introduced in the

literature [135, 136, 137], but there is not a definitive set of requirements that is

commonly used. Examples of some of the proposed conditions are that [138]:

1. tr(MM>) ≤ 4m2
00 ,

2. m00 ≥ |mij| for i, j ∈ {0, 1, 2, 3} ,

3. m2
00 ≥ (m2

01 +m2
02 +m2

03) and
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4. the correlation matrix H = 1
4

∑3
k,l=0mkl(σk ⊗ σl) is positive semidefinite,

where tr(A) and A> denote the trace and transpose of the matrix A respectively.

Furthermore, mij denotes the (i, j)th element of the Mueller matrix and the matrices

σk are the Pauli matrices defined in Equation 2.31. A method to ensure a physically

realisable estimate of the Mueller matrix that fulfills these criteria will be presented

later in Section 4.5.2.

2.2.7 Lu-Chipman Matrix Decomposition

The Mueller matrix is a simple and elegant means of characterising the effect of a

test sample on an incident polarisation state but extracting the polarimetric prop-

erties of the sample (e.g. retardance, diattenuation and depolarisation, which will

be explained below) from the Mueller matrix is not always a trivial task. Various

matrix decompositions [139, 140, 141] have hence been proposed for the interpre-

tation of the Mueller matrix. One of the most widely used decompositions is the

Lu-Chipman matrix decomposition [139], which breaks down a Mueller matrix into

a product of three matrices, each of which can be associated with a retarder, a di-

attenuator or a depolariser. A brief summary of the decomposition is given in this

section, and the reader is referred to Ref. [139] for further details.

A pure diattenuator has an intensity transmission that is dependent on the inci-

dent polarisation state. The diattenuation of the diattenuator is defined as

D =
|Tα − Tβ|
Tα + Tβ

, (2.45)

with values of D lying in the range of 0 and 1, and Tα and Tβ being the transmit-

tances of two orthogonal eigenpolarisations of the diattenuator. Eigenpolarisations

of a polarising element pass through the element unaltered, except for a possible

transmittance factor. The Mueller matrix of a diattenuator is given by

MD = Tu

 1 ~D>

~D mD

 , (2.46)
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where Tu is the transmittance of unpolarised light, and ~D is the diattenuation vector

whose magnitude is equal to D. The direction of ~D is described by the unit vector,

D̂, which is related to the Stokes vector of the eigenpolarisation with the highest

transmittance as ~S = [1, D̂>]>. In addition, mD is a 3× 3 matrix given by

mD =
√

1−D2 I + (1−
√

1−D2)D̂D̂> , (2.47)

where I denotes the 3 × 3 identity matrix and D̂ = ~D/D is the unit vector in the

direction of ~D.

A pure retarder does not change the intensity of the incident light, but introduces

different phase changes for its eigenpolarisations. The retardance of a retarder is

defined as

ϕ = |ϕα − ϕβ| , (2.48)

with values of ϕ lying between 0 and π, and ϕα and ϕβ representing the phases of its

two orthogonal eigenpolarisations. The Mueller matrix of a retarder has a structure

given by

MR =

1 ~0>

~0 mR

 , (2.49)

where ~0 denotes a 3×1 zero vector and mR is a 3×3 unitary matrix with the (i, j)th

element given by

(mR)ij = δij cosϕ+ aiaj(1− cosϕ) +
3∑

k=1

εijkak sinϕ , with i, j ∈ {1, 2, 3} , (2.50)

where δij is the Kronecker delta and εijk is the Levi-Cività permutation symbol.

Additionally, a1, a2 and a3 are elements of the unit retardance vector, R̂, such that

the Stokes vector of the eigenpolarisation with the leading phase can be expressed

as ~S = [1, R̂>]>.

A depolariser changes the degree of polarisation of the incident illumination, and
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can be described by a Mueller matrix written as

M∆ =

 1 ~0>

~P∆ m∆

 , (2.51)

where m∆ is a symmetric 3× 3 matrix and ~P∆ denotes the 3× 1 polarisance vector

of the depolariser, which describes the possible polarising ability of the depolariser.

The three principle axes of the depolariser and their corresponding depolarisation

factors can be found through a diagonalisation of m∆. The average depolarisation

caused by the depolariser can be quantified as

∆ = 1− |a|+ |b|+ |c|
3

, (2.52)

with values of ∆ ranging from 0 to 1, and a, b, and c being the depolarisation factors

of the depolariser.

In the Lu-Chipman matrix decomposition, an arbitrary Mueller matrix can be writ-

ten as a product of the above mentioned matrices as

M = M∆MRMD . (2.53)

The polarisance vector of M, denoted as ~P , is fully determined by its first column,

and describes the polarisation of the output light under unpolarised illumination.

The magnitude of the polarisance is denoted as P . When the product of the three

matrices in the form of Equations 2.46, 2.49 and 2.51 is taken, it can be seen that Tu

corresponds to the M00 element of M, and the diattenuation vector ~D corresponds

to the first row of the Mueller matrix normalised by M00. With knowledge of ~D,

Equations 2.46 and 2.47 can then be used to compute MD. In this way, one of the

matrices in the decomposition is retrieved. Under the assumption that MD is not

singular, multiplying Equation 2.53 by M−1
D yields the modified Mueller matrix

M
′
= MM−1

D = M∆MR =

 1 ~0>

~P∆ m∆mR

 . (2.54)
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As such, the polarisance of the depolariser, ~P∆, can be retrieved from the first col-

umn of M
′
. Finally, the remaining unknown matrices, m∆ and mR, can then be

obtained through a polar decomposition of the 3× 3 real matrix, m
′

= m∆mR. In

this way, the various polarimetric parameters implicit in the Mueller matrix can be

obtained, such as the magnitudes of the various polarimetric parameters provided

by the quantities D, ϕ, ∆ and P .

In the event the MD is singular, the solution for M
′
, and consequently M∆ and

MR, is not unique. This happens when D is equal to one, such that one eigenpo-

larisation is fully transmitted while its orthogonal polarisation state is completely

blocked. Similarly, if m∆ is singular, then the polar decomposition of m
′

has more

than one possible solution for mR. This can happen when a scattering medium gets

too thick, such that the output light becomes fully depolarised. This work consid-

ers scattering media at thicknesses such that some polarisation information is still

preserved (i.e. not fully depolarising). Furthermore, most biological tissues do not

fully block any particular polarisation state (i.e. D < 1). As such, these scenarios

are not particularly relevant to the work and will thus not be further expounded

upon here. The interested reader can find more details in Ref. [139].

2.3 Electromagnetic Scattering

This section introduces key concepts in electromagnetic scattering that are relevant

to this work. For the interested reader, further information can be found in detailed

textbooks on the subject, such as [124, 142]. In this thesis, absorption is assumed

to be negligible. In addition, only linear elastic scattering is considered, where the

frequency of the incident light is maintained upon scattering. Inelastic scattering

phenomena, such as the Raman or Brillouin scattering are not treated in this work.

Furthermore, it is assumed that the incident illumination is fully coherent.

Consider a particle of arbitrary shape and size illuminated by a plane wave, as

depicted in Figure 2.3.
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Figure 2.3: Figure showing the definition of the scattering angles, θ and ψ.

At large distances from the scatterer, the intensity of scattered light observed at the

position ~r = [x, y, z]> in the direction defined by the scattering angles θ and ψ (see

Figure 2.3), is given by [142]

I(θ, ψ, ~r) =
I0

k2|~r|2
F (θ, ψ) (2.55)

where |~r| =
√
x2 + y2 + z2, I0 is the intensity of the incident light and F (θ, ψ)

is a dimensionless quantity which describes the modulation of light as a function

of scattering angle. The origin of this modulation can be intuitively understood

by considering the fundamental process underlying the emission of scattered light.

Consider a theoretical subdivision of an arbitrary particle into many smaller regions.

When an electromagnetic field, which oscillates in time, is incident on the particle,

a dipole moment is induced in each of these small regions. These dipoles, in turn,

oscillate at the frequency of the incident radiation and re-radiate in all directions.

For any given direction in the far-field, the fields from each of these dipoles add

up coherently. For a small particle, with dimensions smaller than the wavelength,

it can be expected that the phase of the fields contributed by each dipole in any

given direction is similar. Consequently, minimal variation in intensity is expected

across all directions. In contrast, for larger particles, given the range of distances

between the dipoles, a greater diversity in the phases contributed by each dipole in
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each direction is expected. As a result, interference between the fields emitted by

each dipole gives rise to intensities that vary with direction.

Let P tot be the total scattered power that is obtained by integrating the scattered

intensity, I(θ, ψ, ~r), over all directions. The scattering cross-section, Csca, of the

particle is defined as the equivalent area over which the power of the incident illumi-

nation is equal to P tot [142]. By this definition, Csca can be written mathematically

as

Csca =
1

k2

∫ 2π

0

∫ π

0

F (θ, ψ) sin θ dθdψ . (2.56)

The scattering phase function, p(θ, ψ), describes the angular variation in the scat-

tered intensity, and is defined as F (θ, ψ) normalised by the total scattered power,

or equivalently, p(θ, ψ) = F (θ,ψ)
k2Csca

. From the scattering phase function, the scattering

anisotropy factor, g, can be defined as [142]

g = 〈cos(θ)〉θ =

∫ 2π

0

∫ π

0

cos θ p(θ, ψ) sin θ dθdψ , (2.57)

where it can be seen that 〈...〉θ is an average over θ and ψ that is weighted by p(θ, ψ).

The scattering anisotropy factor describes the directionality of scattered light, such

that particles that fully scatter light in the forward direction are described by g = 1.

Conversely, g = −1 is associated with particles that cause light to be fully backscat-

tered. In the case of isotropic scattering, where the same amount of light is scattered

in every direction, g = 0.

When a collimated and monochromatic light beam travelling on axis is incident on a

statistically homogeneous scattering medium1 consisting of a random configuration

of independent scatterers2, the amount of unscattered light, otherwise known as

ballistic light, decreases exponentially with depth in the medium. This is described

1A statistically homogeneous scattering medium means that there is an equal probability of
the scatterer being located at any position in the scattering medium.

2The term “independent scatterers” implies that scattering from each particle can be considered
individually without regard for other particles.
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by the Beer-Lambert law, which can be written as

P (L) = Po exp

(
−L
l

)
, (2.58)

where Po is the power when no scattering medium is present and P is the power

of the ballistic component at a depth of L. Equivalently, P is also the transmitted

power of ballistic light in transmission measurements through a slab-shaped scat-

tering medium of thickness L, which is the geometry considered in this work. The

attenuation coefficient, l, is known as the scattering mean free path (MFP), and can

be related to the scattering cross-section as [143]

l =
1

NsCsca
, (2.59)

where Ns is the number density of the scatterers, defined as the number of scatter-

ers per unit volume. The MFP describes the average distance between scattering

events experienced by an incident photon, and its inverse is commonly termed as

the scattering coefficient, denoted as µs. A closely related quantity to the MFP is

the transport mean free path (TMFP), ltr, which is defined as [8]

ltr =
l

1− g
. (2.60)

The TMFP describes the average distance it takes for the direction of the scattered

photon to become completely randomised, and its inverse, denoted as µ
′
s, is known

as the reduced scattering coefficient. For scattering media consisting of scatterers

that scatter predominantly in the forward direction (i.e. g close to 1), the direc-

tionality of light can be preserved over many scattering events, resulting in ltr > l.

On the other hand, if the scattering medium consists mainly of isotropic scatterers

(i.e. g close to 0), then the directionality of light is lost even with a single scattering

event, in which case, ltr = l.

The Beer-Lambert law discussed above discusses the decay of the ballistic light

intensity as a function of medium thickness. One would, perhaps naively, expect

that degree of polarisation decays on the same length scale. Interestingly, for scat-
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tering media with high g, studies have shown that the polarisation of the incident

light persists over length scales much longer than the MFP [16, 117, 144]. By mea-

suring the DOLP and DOCP (see Equation 2.29) of light transmitted through the

scattering medium, it was shown that the decay length of linear or circular polari-

sation was generally different, and that the polarisation state with the longer decay

length depended on the scatterer size [144]. Nevertheless, this decay length, other-

wise known as the depolarisation length, for both linear and circular polarisation

states was shown to be on the order of a few times the TMFP [16, 145], which for a

high g can be equivalent to a decay length that is much longer than the MFP. This

implies that for scattering media with a high g, the polarisation state of the incident

light can still persist even after the intensity of ballistic light has been extinguished

by many orders of magnitude.

2.4 Single Pixel Imaging

Single pixel imaging, as its name suggests, makes use of a detector with only a single

pixel for imaging. This is in contrast to conventional cameras which typically utilise

a detector with multiple pixels, such as CCD or CMOS cameras. The single pixel

camera functions by probing the test object with a sequence of spatial patterns and

collecting the corresponding intensities on a bucket detector containing only a single

pixel [146, 147]. Taking intensity imaging in transmission as an example, the spatial

patterns could be formed by a spatial modulation of the incident light field, while

the intensity transmitted through the test object for each spatial pattern is captured

on a photodiode. Each measured intensity is effectively the scalar projection of the

spatial intensity transmittance of the test object on the associated spatial pattern.

Note that the recovery of the spatial intensity transmittance of the test object is

equivalent to forming its image.

Consider a test object illuminated by the ith spatial mask, which is discretised into

N × N pixels and has a spatial modulation that can be described by the N2 × 1

vector ~φ. The intensity measured by the detector, yi is then given by yi = ~φi · ~x,

where · denotes the dot product and ~x is a N2×1 vector, such that the nth element of

67



Chapter 2: Background

~x corresponds to the spatially averaged intensity transmittance of the object across

the nth pixel of the spatial mask. If M spatial masks are sequentially projected

onto the object, the associated measured intensities can be related to the intensity

transmittance of the test object as

~y = Φ~x , (2.61)

where the ith element of the M × 1 vector ~y is the intensity measured for the ith

projected spatial pattern (i.e. yi) and the ith row of the M × N measurement

matrix Φ corresponds to the spatial modulation of the ith mask (i.e. ~φi). Thus, if

the projected spatial patterns are known and the matrix Φ is invertible, then the

intensity transmittance of the object can be computed from a matrix inverse as

~x = Φ−1~y , (2.62)

from which it can be seen that the discretisation of the incident spatial patterns

determines the image resolution of the single pixel camera. The advantages of sin-

gle pixel imaging lie in its potential for building miniaturised imaging systems at

low cost. This is particularly true when imaging outside of the visible spectrum,

where economical silicon-based pixelated detectors are unavailable and any existing

pixelated detectors come at a high price. In the visible spectrum, the availability

of low-cost CCD and CMOS cameras means that the single pixel camera does not

gain significantly in this respect. Yet, regardless of imaging wavelength, one key

benefit of single pixel imaging is its inherent compatibility with compressive sensing

[113, 114], which enables image recovery with fewer measurement samples than is

typically needed for an accurate image reconstruction. As can be seen from Equa-

tion 2.61, at least N measurements are required in order to have a unique solution

for the N×1 vector ~x (i.e., M ≥ N). This reveals the main drawback of single pixel

imaging - the image acquisition time scales with image resolution. If, however, the

image of the object is “sparse” in some known basis (e.g. a wavelet basis), such that

its decomposition in that sparse basis leads to only a small number of nonzero co-

efficients, then according to compressive sensing theory, it is possible to reconstruct

the image with an undersampled set of measurements by measuring in a basis that
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is “incoherent” with the sparse basis. Note that the “incoherence” between bases

mentioned here is unrelated to the coherence of light, and is part of the terminology

of compressive sensing literature referring to the strength of the correlation between

the elements of the basis vectors in the sparse and measurement basis. As many

natural signals have a sparse representation in an appropriately chosen basis [113],

compressive sensing can be widely applied. Coupled with compressive sensing, sin-

gle pixel imaging can provide high speed imaging at low cost, and also with a lower

data volume, which is important for considerations of data storage. As this work

aims to investigate the feasibility of single pixel polarimetric imaging, compressive

sensing was not utilised in order to minimise any possible error sources. As such,

further details on compressive sensing are not discussed, but can be found instead

in Refs. [113, 114]. Nonetheless, it should be noted that compressive sensing is a

possible means of significantly reducing the acquisition time for single pixel imaging.

Finally, as mentioned in Chapter 1, another advantage of a single pixel camera is its

resilience against the effects of scattering when imaging in intensity. Tajahuerce et

al. [110] showed that when an object was hidden behind a scattering medium (i.e. a

diffuser), spatially resolved cameras imaged a speckle pattern, while the single pixel

camera was able to recover an image of the hidden object. This is possible because

the spatial information of the object is encoded by the projected spatial patterns

before light propagates through the scattering medium. This work aims to extend

this capability to polarimetric imaging through scattering media.

2.5 Research Assumptions

Some of the assumptions made in this work have been introduced earlier in this

Chapter. These assumptions are now summarised in this Section. The assumptions

made are that:

• the scattering medium is statistically homogeneous, in that there is an equal

probability of the scatterer being located at any position in the scattering

medium.

• the scattering medium is in the shape of a slab.
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• there is negligible absorption.

• the incident illumination is fully coherent.

• there is unimpeded access to the illumination side of the test object.

• scattered light maintains the frequency of the incident light (i.e. only elastic

scattering is considered).

• the scattered light analysed by the PSA can be approximated to be collimated.

• the scattering medium is not fully depolarising for any given input polarisation

state.

With these assumptions described, the next Chapter in this thesis presents the

theoretical framework underlying single pixel polarimetric imaging. The impact of

these assumptions on the conclusions made by this work is discussed in Chapter 7.
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Single Pixel Polarimetric Imaging

In Chapter 2, single pixel imaging and polarimetry have been introduced. In this

chapter, the two are combined to give a description of single pixel polarimetric

imaging. A method for single pixel polarimetric imaging through scattering media

is then proposed and investigated using a 2D Green’s tensor formalism.
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3.1 Theoretical Model

3.1.1 Notation

Here, a summary of the notation utilised in this section is provided for the conve-

nience of the reader.

General Notation

Symbols, Z

ψ Amplitude modulation of spatial mask
I Intensity measured by the photodiode
~E Electric Field
~C Coherency vector
~S Stokes vector
~a Stokes vector of an analysed polarisation state
~Ψ Spatial basis vector
T Jones matrix
M Mueller matrix

Superscripts, α, for ~E, ~C and ~S

I Position before the object plane
II Position after the object plane, before the scattering medium
III Position at the detector plane
obj Position after the object plane, under uniform illumination
inc Position before the object plane, under uniform illumination

Subscripts, β

i Index of analysed polarisation state
j Index of input polarisation state
k Index of spatial mask projected
m Index of input pixel
n Index of output pixel
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3.1.2 Without a Scattering Medium

Figure 3.1: Illustration of single pixel polarimetric imaging. The polarised incident
illumination, produced by a polarisation state generator (PSG), is spatially modulated

such that a basis vector of the chosen measurement basis illuminates a test object with a
spatially varying Jones matrix. The transmitted field is then analysed using a
non-imaging polarisation state analyser (PSA), which extracts the polarimetric

information.

Figure 3.1 presents a diagram that illustrates single pixel polarimetric imaging. The

configuration without any scattering medium present is first considered. As in sin-

gle pixel imaging, basis vectors from a chosen measurement basis are sequentially

projected onto a test object, and the resulting intensity is collected using a bucket

detector with no spatial resolution. As discussed in Section 2.4, the measured inten-

sity is the scalar projection of the displayed spatial masks and the object intensity

transmission, and Equation 2.62 can be used to reconstruct an intensity image of

the object, with an image resolution determined by the discretisation of the spatial

masks. In order to obtain a polarimetric image, or more specifically, the spatially

resolved Mueller matrix of the test object, an additional step is required, where the

input polarisation states are varied using a PSG, and the exiting light is analysed

by a PSA, which consists of multiple measurements taken through different polari-

sation analysers. For the ith analysed and jth input polarisation state, the resulting
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spatially varying field at the detector, ~EIII
nijk , can be described as

~EIII
nijk = TiT

obj
n
~EI
njk = TiT

obj
n

(
ψnk ~E

inc
nj

)
= ψnkTi

~Eobj
nj , (3.1)

where due to the discretised nature of the illumination, the spatial co-ordinate is also

discretised into pixels with n being the corresponding index. For the nth pixel, Ti and

Tobj
n are the Jones matrices of the polarisation analyser and the object respectively,

while ~Einc
nj is the incident field without modulation and ψnk describes the amplitude

modulation due to the kth spatial mask such that the field right before the object is

given by ~EI
njk = ψnk ~E

inc
nj . Additionally, ~Eobj

nj = Tobj
n
~Einc
nj can be understood as the

field in a plane that is directly after the object when illuminated by an incident field

without spatial modulation. Equation 3.1 can be converted into its Stokes-Mueller

form by first writing it in terms of coherency vectors. The coherency vector at each

output detector pixel, ~CIII
nijk, is

~CIII
nijk = 〈 ~EIII

nijk ⊗ ~EIII,∗
nijk 〉t

= |ψnk|2 (Ti ⊗T∗i ) 〈 ~E
obj
nj ⊗ ~Eobj,∗

nj 〉t

= |ψnk|2 (Ti ⊗T∗i ) ~C
obj
nj ,

(3.2)

where 〈...〉t denotes an averaging over time, and ~Cobj
nj = 〈 ~Eobj

nj ⊗ ~Eobj,∗
nj 〉t. For the rest

of this section, it will be assumed that fully coherent light is utilised, such that 〈...〉t
is a constant and can therefore be omitted. Recalling Equation 2.32, the related

output Stokes vector can then be shown to be

~SIIInijk = |ψnk|2 Mi
~Sobjnj , (3.3)

where ~Sobjnj = Γ~Cobj
nj is the Stokes vector incident on the PSA, Mi = Γ (Ti ⊗T∗i ) Γ−1

is the Mueller matrix of the ith polarisation analyser and Γ is the transformation

matrix relating coherency and Stokes vectors, as defined in Equation 2.32. The total

Stokes vector summed across all output pixels is given by

~Stotijk =
∑
n

~SIIInijk = Mi

∑
n

|ψnk|2 ~Sobjnj . (3.4)
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The measurement by the bucket detector is a sum in intensity over all output pixels,

and, by definition, is equal to the first element of ~Stotijk, which is denoted as Stotijk,0.

Using Equation 3.4, the measured intensity, I totijk, can be written in terms of the

elements of ~Sobjnj as

I totijk = Stotijk,0 =
∑
n

|ψnk|2
(
Mi,00S

obj
nj,0 +Mi,01S

obj
nj,1 +Mi,02S

obj
nj,2 +Mi,03S

obj
nj,3

)
=
∑
n

|ψnk|2
(
~a>i
~Sobjnj

)
= ~Ψk · ~xij ,

(3.5)

where Mi,pq is the (p, q)th element of Mi, and Sobjnj,p is the pth element of ~Sobjnj . In

addition, ~xij is a vector whose nth element, xij,n = ~a>i
~Sobjnj , corresponds to the

scalar projection of ~Sobjnj on the Stokes vector corresponding to the analysed state,

~ai = [Mi,00,Mi,01,Mi,02,Mi,03]>. Note that although it has not been explicitly stated

in this discussion, ~ai (and also Mi) are normalised to ensure that the analyser is

passive, as explained in Section 2.2.5. Physically, ~xij is the intensity that would

be observed by a spatially resolved detector. From Equation 3.5, it can be seen

that I totijk is the scalar projection of the displayed spatial basis vector, ~Ψk, and ~xij.

Thus, Equation 2.62 allows for ~xij to be reconstructed for each input and analysed

polarisation.

Once ~xij has been reconstructed for all input and analysed polarisation states, the

spatially resolved Mueller matrix can be computed by the application of Equation

2.44 on a pixel-wise basis, along with the matrices A and W that are obtained via

calibration. For the nth pixel, Equation 2.44 can be written as

Mn = A−1DnW
−1 . (3.6)

Equation 3.6 is explicitly related to the variables in Equation 3.5 as

Dn,ij = xij,n ,

~Ai∗ = ~ai ,

~W∗j = Γ~Cinc
nj = ~Sincnj .

(3.7)
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where Dn,ij is the (i, j)th element of the matrix Dn. Moreover, the ith row in the

matrix A, ~Ai∗, is the Stokes vector of the ith analysed polarisation state, ~ai, while

the jth column of W, ~W∗j, is the incident Stokes vector corresponding to the jth

input polarisation state, ~Sincnj . The use of Equation 3.6 completes the process of

single pixel polarimetric imaging, returning a spatially resolved polarimetric image

of the test object.

3.1.3 In the Presence of a Scattering Medium

Figure 3.2: Illustration of single pixel polarimetric imaging with a scattering medium
present. The polarised incident illumination, produced by a polarisation state generator
(PSG), is spatially modulated such that a basis vector of the chosen measurement basis

illuminates a test object with a spatially varying Jones matrix. The field then
propagates through the scattering medium, and the transmitted light is analysed using a

non-imaging polarisation state analyser (PSA), which extracts the polarimetric
information.

Figure 3.2 shows an illustration of single pixel polarimetric imaging with a scatter-

ing medium present. In the presence of a scattering medium, transmission through

the medium has to be taken into account. In this work, static scattering media are

considered, such that the transmitted speckle patterns do not change with time.

This can also be seen as a study of dynamic scattering media under the quasistatic

approximation.

The vectorial electric field in the planes before and after a scattering medium are
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related by the vectorial amplitude transmission matrix (VTM), tSM , as

~Eout = tSM ~Ein , (3.8)

where ~Ein and ~Eout are column vectors describing the vectorial fields for all input

and output spatial modes respectively. As described in Chapter 1, a spatial basis

consisting of a complete set of orthogonal spatial modes can be used to describe any

arbitrary field at the input or output of a scattering medium. Here, a discretised

pixel basis is assumed for both input and output modes. From Equation 3.8, it can

be seen that the field in any given output pixel is a weighted sum of the fields over

all input pixels. This can be written as

~Eout
n =

∑
m

TSM
nm

~Ein
m , (3.9)

where TSM
nm is a 2 × 2 sub-block of tSM , and is the Jones matrix relating the field

for the mth input pixel to the field for the nth output pixel. As such, for the setup

shown in Figure 3.2, the field at the bucket detector for the jth input and the ith

analysed polarisation state is given by

~EIII
nijk = Ti

∑
m

TSM
nm

~EII
mj

= Ti

∑
m

ψmkT
SM
nm Tobj

m
~Einc
mj

= Ti

∑
m

ψmkT
SM
nm

~Eobj
mj ,

(3.10)

where the notation follows that of Section 3.1.2. Comparing Equation 3.10 to Equa-

tion 3.1, it can be seen that in the presence of a scattering medium, each output

pixel consists of field contributions from all input pixels. As such, the input field

can be seen to be scrambled by the presence of the scattering medium. This is the

reason why a hidden object cannot be seen when imaging with a spatially resolved

camera. Yet, as the following discussion will demonstrate, single pixel imaging is

still able to reconstruct an image of the hidden object. To see this, Equation 3.10
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is first written in terms of coherency vectors as

~CIII
nijk = ~EIII

nijk ⊗ ~EIII,∗
nijk

=

(∑
m

ψmkTiT
SM
nm

~Eobj
mj

)
⊗

(∑
l

ψlkTiT
SM
nl

~Eobj
lj

)∗
=
∑
m

∑
l

ψmkψ
∗
lk (Ti ⊗T∗i )

(
TSM
nm ⊗TSM,∗

nl

)(
~Eobj
mj ⊗ ~Eobj,∗

lj

)
=
∑
m

|ψmk|2 (Ti ⊗T∗i )
(
TSM
nm ⊗TSM,∗

nm

)
~Cobj
mj

+
∑
m

∑
l

l 6=m

ψmkψ
∗
lk (Ti ⊗T∗i )

(
TSM
nm ⊗TSM,∗

nl

)
~Cobj
mlj ,

(3.11)

where the second equality follows from the mixed product property of the direct

product [148] and ~Cobj
mlj = ~Eobj

mj ⊗ ~Eobj,∗
lj . Also, the final expression in Equation 3.11

follows from the second equality by segmenting the terms with m = l. The total

coherency vector, ~Ctot
ijk, summed over output pixels is then given by

~Ctot
ijk =

∑
n

~CIII
nijk

=
∑
m

|ψmk|2 (Ti ⊗T∗i ) Am
~Cobj
mj +

∑
m

∑
l

l 6=m

ψmkψ
∗
lk (Ti ⊗T∗i ) Bml

~Cobj
mlj ,

(3.12)

where

Am =
∑
n

(
TSM
nm ⊗TSM,∗

nm

)
, Bml =

∑
n

(
TSM
nm ⊗TSM,∗

nl

)
. (3.13)

Equation 3.12 shows that the total coherency vector consists of two contributions.

The first term is an incoherent sum of the contributions from each input pixel,

while the second term has a mixed contribution from different pixels, and can be

interpreted as an interference term. Bml can be written explicitly as

Bml =
∑
n


Tnm,00T

∗
nl,00 Tnm,00T

∗
nl,01 Tnm,01T

∗
nl,00 Tnm,01T

∗
nl,01

Tnm,00T
∗
nl,10 Tnm,00T

∗
nl,11 Tnm,01T

∗
nl,10 Tnm,01T

∗
nl,11

Tnm,10T
∗
nl,00 Tnm,10T

∗
nl,01 Tnm,11T

∗
nl,00 Tnm,11T

∗
nl,01

Tnm,10T
∗
nl,10 Tnm,10T

∗
nl,11 Tnm,11T

∗
nl,10 Tnm,11T

∗
nl,11

 , (3.14)
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where Tnm,pq is the (p, q)th element in TSM
nm , and the superscript, ‘SM’, has been

omitted for legibility. Am has the same form as Bml, except that l is replaced by

m (i.e. Am = Bmm). The transmitted speckle at the nth output pixel due to the

incident field at the mth input pixel can be computed asEIII,x
n

EIII,y
n

 =

Tnm,00 Tnm,01

Tnm,10 Tnm,11

EII,x
m

EII,y
m

 , (3.15)

where EII,x
m and EII,y

m are the components of the incident electric field from the

mth input pixel along the x and y axis respectively, and EIII,x
n and EIII,y

n are de-

fined in a similar fashion. In this way, it can be seen that the elements in TSM
nm

describe the different polarisation components of the output speckle for the nth out-

put pixel due to an incident field from the mth input pixel with a polarisation state

of ~EII
m =

[
EII,x
n , 0

]>
or ~EII

m =
[
0, EII,y

n

]>
. Since the summation in Equation 3.14

is taken over all output pixels, the elements in Am can therefore be interpreted as

spatial correlations between polarised speckles from the same input pixel, while on

the other hand, the elements of Bml can be seen to be the correlations between po-

larised speckles produced from different input pixels. Let Cr1 denote the minimum

distance between input points such that the speckle at any fixed output point is ap-

proximately uncorrelated. If the spatial extent of the input pixel is much larger than

Cr1 , it can be expected that the correlations between speckles formed from different

input pixels are much smaller than the correlations between speckles produced by

fields from the same input pixel. Therefore, element-wise, Am can be expected to be

much larger than Bml, in agreement with the scalar formulation [110]. This allows

Equation 3.12 to be approximated as

~Ctot
ijk ≈

∑
m

|ψmk|2 (Ti ⊗T∗i ) Am
~Cobj
mj . (3.16)
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Using Equation 2.32, the total output Stokes vector is

~Stotijk = Γ~Ctot
ijk = Mi

∑
m

|ψmk|2 ΓAmΓ−1~Sobjmj

= Mi

∑
m

|ψmk|2 MSM
m

~Sobjmj

= Mi

∑
m

|ψmk|2 MSM
m Mobj

m
~Sincmj ,

(3.17)

where Mi, MSM
m = ΓAmΓ−1 and Mobj

m are the Mueller matrices of the polarisation

analyser, the scattering medium and the object respectively, and ~Sincmj is the Stokes

vector corresponding to the jth input polarisation state for the mth input pixel.

If MSM
m is assumed to be independent of m, then Equation 3.17 can be simplified as

~Stotijk = MiM
SM
∑
m

|ψmk|2 ~Sobjmj

= Qi

∑
m

|ψmk|2 ~Sobjmj ,
(3.18)

where Qi = MiM
SM describes the combined effect of both the analyser and the

scattering medium. The validity of this assumption (i.e. that MSM
m is assumed

to be independent of m) is discussed in the later part of this section. Comparing

Equation 3.18 to Equation 3.4, it can be seen that the two equations have the same

form, except for the contribution of the scattering medium, MSM . Therefore, similar

to Equation 3.5, the intensity measured by the bucket detector is given by

I totijk = Stotijk,0 =
∑
m

|ψmk|2
(
Qi,00S

obj
mj,0 +Qi,01S

obj
mj,1 +Qi,02S

obj
mj,2 +Qi,03S

obj
mj,3

)
=
∑
m

|ψmk|2
(
~a>i MSM ~Sobjmj

)
= ~Ψk · ~x

′

ij ,

(3.19)

where Qi,pq denotes the (p, q)th element of Qi. Note that, unlike Section 3.1.2,

~x
′
ij =

(
~a>i MSM ~Sobjmj

)
does not correspond to the intensity image that would have

been seen through the polarisation analyser by a spatially resolved camera, as MSM

is derived from Am, which consists of a sum over all output pixels. Nevertheless,
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Equation 2.62 allows the reconstruction of ~x
′
ij, which can be understood as an image

of the object as seen through the polarisation analyser, but with an additional optical

element in between. Once ~x
′
ij has been reconstructed for all input and analysed

polarisation states, the set of obtained intensity values for the mth input pixel can

be related to its Mueller matrix as

Dm = AMSMMobj
m W , (3.20)

which is an altered form of Equation 4.31 that includes the effect of the scattering

medium. The relationship between the matrices in Equation 3.20 and the variables

in Equation 3.19 are as previously described in Equation 3.7. Finally, the spatially

resolved Mueller matrix of the hidden object can be computed through an inversion

of Equation 3.20 as

Mobj
m = MSM,−1A−1DmW−1 . (3.21)

In the above discussion, MSM
m was assumed to be independent of m, though in

general, MSM
m is a function of the position of the input pixel. In the general case,

Equations 3.19 to 3.21 still hold, but MSM
m at each input point needs to be known

in order to reconstruct Mobj
m . This would be inconvenient in practice, as the Mueller

matrix of the scattering medium corresponding to each pixel has to be measured

beforehand. There are, however, cases where it is possible that MSM
m becomes inde-

pendent of the input pixel position, thereby greatly simplifying the reconstruction

process. One example is when I totijk is averaged over different instances of disorder

in a statistically homogeneous scattering medium, which, as explained in Section

2.3, means that there is an equal probability of the scatterer being located at any

position in the scattering medium. For such media, the related Jones matrix TSM
nm

is a statistically stationary random variable such that 〈TSM
nm 〉 = 〈TSM

n−m〉, that is,

the ensemble-averaged Jones matrix only depends on the difference in position of

the input and output pixels, rather than their absolute positions. Consequently,

the ensemble-averaged speckle correlations 〈TSM
nm ⊗ TSM, ∗

nl 〉 are a function of the

separation between input pixels, and do not depend on the absolute position of the

input pixels. As such, it can be expected that through ensemble averaging, Am,

and hence also MSM
m , is independent of m. Experimentally, a possible way that this
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could be achieved is by imaging through dynamic scattering media over sufficiently

long time scales. Averaging over time, however, sets a limitation on the minimum

acquisition time required. Ensemble averaging can also be implemented by taking

a spatial average over an input pixel. This will be investigated further in Section

3.2.2, where it will be shown that for a sufficiently large pixel size, MSM
m becomes

less dependent on the instance of disorder, which allows the same Mueller matrix

to be used for different scatterer configurations. In this regime, each large pixel

consists of many independent areas, with each area giving rise to a transmitted

speckle pattern that is uncorrelated to the others, so that they can be considered to

be related to a different instances of disorder. The Mueller matrix measured over

a pixel is then equivalent to an average over different instances of disorder, and is,

therefore, independent of the input pixel position. As such, even for a single instance

of disorder, it is possible to use the same Mueller matrix for the scattering medium

across all input pixels, so long as the pixel size is sufficiently large. In practice, the

assumption of statistical homogeneity generally does not hold for biological tissues,

for example when imaging across different tissue types. Nevertheless, it is possible

to define a field of view over which the tissue can be approximated to be statistically

homogeneous, such that the same Mueller matrix can be used for each input pixel.

A key assertion in the above derivation is that the interference term in Equation

3.11 is negligible (i.e. Am � Bml). The validity of this claim will be investigated

in Section 3.2.3. Moreover, although 3D Stokes vectors can, in theory, be defined

[149], most polarimeters only measure a 2D projection of the polarisation state (for

e.g. [150, 151]). The experimental setup and data processing used in this work (see

Chapter 4) are also based on the same approximation. This implies that only low

numerical apertures (NA) should be used as the axial electric field that arises with

light propagating at high angles is unaccounted for, and would cause an error in the

measured polarisation state [152]. In Section 3.2.4, the effect of NA on single pixel

imaging polarimetry is studied.
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3.2 Simulations

In this section, the assumptions of the presented theoretical model are examined

using numerical simulations. To this end, there are many techniques which have

been developed for the simulation of electromagnetic scattering from randomly po-

sitioned particles, each one applying different strategies and assumptions to solve

Maxwell’s equations [120, 153, 154].

The first group of techniques approximates the differential operators in the differen-

tial form of Maxwell’s equations (see Equations 2.1 to 2.4), through a discretisation

of time and/or space [155, 156]. The main advantage of these techniques is their ap-

plicability to inhomogeneous, anisotropic particles of arbitrary shapes. In addition,

implementations of these methods are available to the general public. Yet, compu-

tation time and power often becomes an issue for these techniques, such as in the

simulation of particles that are much larger than the wavelength, or thick scattering

media with a large number of scatterers. The second group of techniques describes

the electric fields in terms of basis functions, which are themselves solutions to the

vector Helmholtz equation (see Equation 2.20) [125, 126], as was described in Sec-

tion 2.1. The related mode coefficients are then determined by a matching of the

appropriate boundary conditions [124]. These methods have been shown to have

high numerical accuracy and can be used for benchmarking. Another significant

advantage is that with the coefficients in the expansion, one obtains full information

about the scatterer so the computation does not have to be repeated for different

particle orientations, or equivalently, different incident angles of illumination. This

group of techniques, however, tends to be computationally intensive, particularly

for simulations with a large number of scatterers. The third group of techniques

approximates the solution to the inhomogeneous wave equation, Equation 2.15, by

a discretisation of the integral taken over the scatterer volume in Equation 2.17

[121, 122]. By doing so, a set of linear equations can be solved to obtain the result-

ing field. As the computation is confined to the scatterer’s volume, this relaxes the

demand on computational resources in comparison to finite difference techniques. In

addition, anisotropic, inhomogeneous and arbitrarily shaped particles can be simu-
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lated. One disadvantage, however, is that, the computation has to be repeated for

each new incidence angle of illumination and particle orientation. The last group of

techniques solves the electromagnetic scattering problem stochastically. Examples

of such techniques are Monte Carlo methods [157, 158], which model photon propa-

gation in the scattering medium as a random walk, and random matrix theory [78],

which generate elements of the scattering matrix from a pre-defined probability dis-

tribution that can then be used to compute the resulting light field. The flexibility

of stochastic methods, such as in their ability to simulate, in principle, any incident

light field, make them an attractive means of simulating electromagnetic light scat-

tering, but the choice of a realistic probability distribution is not always clear-cut

and affects the accuracy of the results. Furthermore, in particular for Monte Carlo

methods, high accuracies can be achieved by launching a large number of photons,

but this comes at high computational cost.

Each of these techniques have their strengths and drawbacks, and there isn’t one

technique that stands out as the best across all applications. The choice of technique

is usually specific to the application. In this work, the field at a fixed detector plane

is to be calculated over multiple scatterer configurations, for a constant illumination.

Also, the thickness of the scattering medium should span a range of TMFPs (from

less than one to a few). On the other hand, the transverse width of the medium

needs to be a few times larger than the illumination spot so that edge effects from

scattering off the boundary of the medium are negligible. A large number of scat-

terers is usually required to satisfy these conditions. Take for example, a three

dimensional scattering medium with a transverse width of 1mm and a MFP of 200

microns. Assuming spherical scatterers in air, with a scatterer refractive index of 1.5

and a sphere diameter of 1 micron, a single instance of disorder contains circa one

million scatterers. In view of the computational requirements of the simulations, the

coupled dipole method was chosen for this work. In order to decrease the compu-

tational load further, the simulation was reduced to two dimensions, with the third

dimension taken to extend to infinity. As such, the 2D coupled line dipole method

based on the 2D Green’s tensor was used to study the validity of the assumptions

made in Section 3.1.3.
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3.2.1 Numerical Methods

Simulation Geometry and Parameters

Figure 3.3: Simulation geometry showing the definition of the electric field in the far
field.

The geometry of the simulation is shown in Figure 3.3, and the simulation param-

eters are defined in Table 3.1 below. Light travelling in the z-direction is incident

on a 2D scattering medium of randomly positioned and non-overlapping cylinders

in air. The cylinders are taken to be infinitely long in the y-direction, and their

positions within the scattering medium are randomly chosen from a uniform distri-

bution. In the transverse direction, the cylinders are assumed to be much smaller

than the wavelength, such that they can be approximated as line dipoles. The dipole

polarisability is governed by the radius and refractive index of the cylinders, which

is described in Table 3.1 below.

In an experiment, the field within the numerical aperture of the collecting optics

is collected and imaged onto the detector. In order to study the feasibility of the

proposed method in a manner that is independent of the design of the collecting
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optics, the resulting field is calculated in the far-field on a spherical detector with

a radius of 10000λ0 that is centred on O, where λ0 is the wavelength in free space.

The computed field corresponds to the field within the numerical aperture of the

collecting optics, before it is propagated through the lens. The detector pixels have

an arc length separation of λ0
2

, and the full detector size corresponds to a numerical

aperture of NA = sin θNA ≈ 0.1. For each detector pixel, the perpendicular and

parallel components of the field, E⊥ and E‖, are defined with respect to the plane

defined by the cylinder axis and the scattering direction, as illustrated in Figure 3.3.

As biological samples have a MFP on the order of 100 microns [8, 17], similar MFPs

were chosen for this simulation. Nevertheless, it is the ratio of thickness to MFP,

ζ = L
l
, that is of importance as it defines the average number of scattering events ex-

perienced by a photon that enters the scattering medium. The MFP was computed

using Mie theory [142] under the dipole approximation, using the refractive indices

and cylinder radius specified in Table 3.1. The refractive index and radius of the

cylinders affects their scattering cross-section, which in turn affects the density of

scatterers required to achieve a desired MFP. Since the computational load increases

with the number of scatterers, the refractive index and radius of the cylinders were

selected in order to have a reasonable number of scatterers that could be managed

by the available computational resources. Due to the cylindrical geometry of the

scatterers, the MFP differs for incident fields polarised parallel ( ~Einc
‖ ) and perpen-

dicular ( ~Einc
⊥ ) to the cylinder axis. For the scattering geometry considered, ~Einc

‖ has

an electric field that oscillates in the y-direction while ~Einc
⊥ has an electric field that

oscillates in the x-direction. ζ was defined with respect to the MFP corresponding

to ~Einc
⊥ as ζ = L

l⊥
, with l⊥ denoting the relevant MFP. Values of ζ ranging from 1

to 3 were used.
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Parameter Value

Wavelength, λ0 638 nm

Cylinder radius, a 220 nm

Transverse width, W 1 mm

Refractive index of cylinder, ncyl 1.6

Refractive index of background, n 1

Mean free path ( ~Einc
‖ ), l‖ 368 µm

Mean free path ( ~Einc
⊥ ), l⊥ 200 µm

Scattering anisotropy factor, g 0

Mean spacing between cylinders 10.95µm

Ratio of thickness to mean free path, ζ = L
l⊥
{1, 2, 3}

Table 3.1: Simulation Parameters.

The Coupled Dipole Formalism

In this section, the coupled dipole technique used in this work is described. The

methodology used in these simulations expands on the work previously done by A.

Van de Nes [122]. As such, the main equations from the original formalism are first

presented, from which a novel application is then formed in the ensuing sections.

For further details and derivation, the reader is referred to Refs. [122, 159].

The 2D Green’s tensor describing the electric field at ~r = (x, y, z) radiated by a

single electric line dipole at ~r
′
= (x

′
, y
′
, z
′
) can be written as

Ge
(
~r, ~r

′
)

=
i

4


cos2 ψH0 − cos 2ψ

kρ
H1 0 sin 2ψ

2kρ
(2H1 − kρH0)

0 H0 0

sin 2ψ
2kρ

(2H1 − kρH0) 0 sin2 ψH0 + cos 2ψ
kρ

H1



=
i

4


(
z−z′

ρ

)2

H0 +

(
x−x′

)2
−
(
z−z′

)2

kρ3
H1 0

(
x−x′

)(
z−z′

)
(2H1−kρH0)

kρ3

0 H0 0(
x−x′

)(
z−z′

)
(2H1−kρH0)

kρ3
0

(
x−x′

ρ

)2

H0 −
(
x−x′

)2
−
(
z−z′

)2

kρ3
H1

 ,

(3.22)

87



Chapter 3: Single Pixel Polarimetric Imaging

where ρ and ψ are the cylindrical co-ordinates defined as

ρ =
√

(x− x′)2 + (z − z′)2, ψ = tan−1

(
x− x′

z − z′
)
. (3.23)

Also, Hn denotes the Hankel function of the first kind of order n with an omitted

argument of kρ, where as defined previously, k = 2π
λ0

corresponds to the wavevector

in free space. Since the line dipoles are infinite in the y-direction, the resulting

fields are independent of the y co-ordinate, as can be seen from Equation 3.22.

Nevertheless, all three co-ordinates have been specified for the sake of completeness.

In the limit of large arguments, the Hn takes on the following form [160]

Hn(ξ) =

√
2

πξ
exp

(
i
(
ξ − nπ

2
− π

4

))
. (3.24)

Therefore, to obtain the far-field expression of the Green’s tensor, Equation 3.24 was

used to evaluate the Hankel functions in Equation 3.22. The near-field expression

of the Green’s tensor was used for the computation of the dipole moments, while

the far-field Green’s tensor was used to compute the field at the detector (see below).

For a collection of N line dipoles, the electric field, ~E(~r), at any point outside

of the cylinders can be computed from the Green’s tensor as

~E(~r) = ~Einc(~r) + ω2µo

N∑
n=1

Ge(~r, ~rn)~pn

= ~Einc(~r) + ~Escat(~r),

(3.25)

where ~Einc(~r) is the unscattered incident field at ~r and ~pn is the dipole moment of

the nth line dipole. The resulting field is thus a superposition of the incident field

and the fields scattered by the line dipoles, ~Escat(~r). To compute ~E(~r), it can be

seen that the dipole moment of each line dipole must first be obtained. The dipole

moment of the mth line dipole that is located at ~rm, is given by

~pm = αm
~Eexc(~rm) (3.26)
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where αm is the polarisability of the line dipole and ~Eexc(~rm) is the exciting field.

An expression for the polarisability of a line dipole is derived in the next part of

this section. Since identical particles were used in this simulation, αm was the same

for all line dipoles. The exciting field, ~Eexc(~rm), is the total field at ~rm due to the

incident field and all other line dipoles in the medium. It should be noted that the

exciting field, ~Eexc(~rm), is not the same as the actual field at ~rm, ~E(~rm), as the

latter includes a self-contribution term [159]. Thus, inserting Equation 3.25 in 3.26,

~pm can be expressed as

~pm = αm
~Eexc( ~rm) = αm

~Einc(~rm) + ω2µo

N∑
n=1
n6=m

αmGe(~rm, ~rn)~pn . (3.27)

Equation 3.27 can be seen to form a set of 3N × 3N linear equations, which can be

solved to obtain ~pm. With the dipole moments known, Equation 3.25 can be used

to obtain the electric field for any point exterior to the cylinders. As such, for a

specified incident field, Equation 3.25 enables the computation of the resulting field,

in a similar way as how tSM provides the resulting field for a given incident field in

Equation 3.8. Though not explicitly used in this work, it can be noted that there

exists a relationship between tSM and Ge [143].

As the resulting fields computed by Equation 3.25 were defined in terms of their

Cartesian components, it was necessary to perform a co-ordinate transformation in

order to compute the parallel and perpendicular components of the field as defined

in Figure 3.3, with the components denoted as E‖ and E⊥ respectively. Under the

paraxial approximation, each point (x, z) in the far-field corresponds to a plane

wave travelling with an angle of β = tan−1
(
x
z

)
from the z-axis [101]. Furthermore,

the electric field oscillates in a plane that is orthogonal to the wavevector. There-

fore, to obtain E‖ and E⊥, the field was converted to cylindrical components. The

transformation matrix required can be written as
ρ̂

ψ̂

ŷ

 =


sinψ 0 cosψ

cosψ 0 − sinψ

0 1 0



x̂

ŷ

ẑ

 , (3.28)
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where (ρ̂, ψ̂, ŷ) and (x̂, ŷ, ẑ) are the unit vectors of the cylindrical and Cartesian

co-ordinate systems respectively. The field component along ψ̂ is then E⊥, while

the component along ŷ is E‖.

An Expression for Dipole Polarisability

In order to solve Equation 3.27, an expression for the polarisability of a line dipole

is needed. Figure 3.4 describes the considered geometry, where a single infinite

cylinder, located at the origin, is normally illuminated by a plane wave, ~Einc. The

resulting scattered field is observed in the direction of ~Escat, at an observation point

~r = (ρ, ψ, y), Since the cylinder is at the origin, ρ = |~r|2.

Figure 3.4: Illustration of an infinite cylinder of radius a that is illuminated by ~Einc,
with the scattered field observed in the direction of ~Escat.

Given the geometrical anisotropy of the scatterer, the polarisability, α, is generally

a tensor that can be written as

α =


αxx 0 0

0 αyy 0

0 0 αzz

 . (3.29)

In addition, due to symmetry, αxx = αzz. To obtain an expression for the polaris-
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ability, the far-field radiation by a single line dipole is first considered. There exists

a known expression for the far-field scattered fields from a single infinite cylinder

[124], which can be written, for an arbitrary cylinder radius, a, as

~Escat
‖ (~r) = Escat

‖ (~r) ŷ = exp

(
i
3π

4

)√
2

πkρ
exp (ikρ)T1(ψ) Einc

‖ ŷ

~Escat
⊥ (~r) = Escat

⊥ (~r) ψ̂ = exp

(
i
3π

4

)√
2

πkρ
exp (ikρ)T2(ψ) Einc

⊥ ψ̂ ,

(3.30)

where ~Escat
‖ is the scattered field related to an incident plane wave polarised parallel

to the cylinder axis, ~Einc
‖ , while ~Escat

⊥ is defined similarly. In addition, ŷ and ψ̂

are the unit vectors that were previously defined in Equation 3.28. For light that

is normally incident on the cylinder axis, no polarisation mixing occurs, such that

incident fields parallel to the cylinder axis give rise to scattered fields that remain

parallel to the cylinder axis, while incident fields perpendicular to the cylinder axis

result in scattered fields that are also perpendicular to the cylinder axis [124]. The

coefficients, T1(ψ) and T2(ψ), in Equation 3.30 can be expressed as

T1(ψ) = b0 + 2
∞∑
n=1

bn cos (nψ)

T2(ψ) = a0 + 2
∞∑
n=1

an cos (nψ) ,

(3.31)

such that an and bn are the Mie coefficients that are defined as

an =
mJ

′
n (x) Jn (mx)− Jn (x) J

′
n (mx)

mJn (mx)H ′n (x)− J ′n (mx)Hn (x)

bn =
Jn (mx) J

′
n (x)−mJ ′n (mx) Jn (x)

Jn (mx)H ′n (x)−mJ ′n (mx)Hn (x)
,

(3.32)

where primes denote derivatives with respect to the argument, x = ka and m =
ncyl

n

is the refractive index of the cylinder relative to that of the background. In Equation

3.32, Jn denotes the nth order Bessel function of the first kind.

Using Equations 3.22 to 3.25, for a field that is normally incident and polarised
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parallel to the cylinder axis, i.e.

~Einc
‖ =


0

Ey

0

 , (3.33)

the resulting scattered field at a point, ~r, in the far-field can be shown to be

~Escat(~r) =
i

4
ω2µoH0αyyEy ŷ

≈ − exp

(
i
3π

4

)√
2

πkρ
exp(ikρ)

[(
i

4

)
ω2µoαyy

]
Ey ŷ ,

(3.34)

Thus, a field with an incident polarisation that is parallel to the cylinder axis results

in a scattered field with the same polarisation, in agreement with Equation 3.30.

Comparing Equation 3.34 and 3.30, it can be seen that αyy can be computed as

αyy = i
4

ω2µo
T1(ψ) . (3.35)

The derivation for αxx, and thus also αzz, is also conducted in a similar manner.

For an incident field that is polarised perpendicularly to the cylinder axis, i.e.

~Einc
⊥ =


Ex

0

0

 , (3.36)

the resulting scattered field can be calculated from Equations 3.22 to 3.25 to be

~Escat(~r) =
i

4
ω2µoαxxEx


c1H0 + c2H1

0

c3 (2H1 − kρH0)

 , (3.37)

where c1 = cos2 ψ, c2 = − cos(2ψ)
kρ

and c3 = sin(2ψ)
2kρ

. In order to have a representation

of the field in terms of its E⊥ and E‖ components, a co-ordinate transformation

is needed to convert Equation 3.37 from the Cartesian to cylindrical co-ordinates.

The transformation matrix has been defined previously in Equation 3.28. Under

this transformation, it can be shown that in the far-field, Equation 3.37 reduces to
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the form

~Escat(~r) =
i

4
ω2µoαxxEx


0

H0 cosψ

0


=
i

4
ω2µo cosψH0αxxEx ψ̂

≈ − exp

(
i
3π

4

)√
2

πkρ
exp(ikρ)

[
ω2µo cosψαxx

]
Ex ψ̂ .

(3.38)

Since ψ̂ corresponds to the direction of the perpendicular component of the field, it

can be seen that an incident polarisation that is perpendicular to the cylinder axis

results in a scattered field with the same polarisation, in agreement with Equation

3.30. A comparison of Equation 3.38 and 3.30 shows that αxx and αzz have the form

αxx = αzz = i
4

ω2µo
T2(ψ)

1

cosψ
. (3.39)

In the small-particle limit, T1 and T2 can be expressed as [124]

T1 = b0, T2 = 2a1 cosψ . (3.40)

Substituting Equation 3.40 in Equations 3.35 and 3.39, the polarisability for a line

dipole is hence given by

αxx = αzz = i
8

ω2µo
a1

αyy = i
4

ω2µo
b0 .

(3.41)

Computation of the Mueller Matrix

The Mueller matrix of the scattering medium at the nth output pixel from an incident

field at the mth input pixel, can be obtained by first computing the corresponding

Jones matrix, which is defined as

TSM
nm =

Tnm,00 Tnm,01

Tnm,10 Tnm,11

 , (3.42)
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such that EIII
n,‖

EIII
n,⊥

 =

Tnm,00 Tnm,01

Tnm,10 Tnm,11

EII
m,‖

EII
m,⊥

 . (3.43)

Through the use of Equation 3.25, the Jones matrix related to each detector pixel

can be formed by calculating separately the fields caused by the incident fields,

~EII
‖ = [EII

m,‖, 0]> and ~EII
⊥ = [0, EII

m,⊥]>. For each input polarisation state, the

resulting field at the detector forms a column in the Jones matrix, as can be seen

from Equation 3.43. The Mueller matrix corresponding to each output pixel can

then be computed using Equation 2.38.

Form of the Incident Field

In order to simulate a pixel, a spatially confined and physical field is required. The

Gaussian beam is an attractive option as there exists a simple analytical form for

the field (at least in the paraxial regime), which is advantageous from the point of

view of computational efficiency. This is especially important as the field has to

be computed not only at the detectors, but also at the position of each randomly

positioned line dipole, so the choice of field has a direct impact on the computation

time and complexity. Therefore, to simulate an input field of finite transverse extent,

a Gaussian beam was used as the incident field. The diameter at the beam waist,

d = 2w0, was set to be equal to the pixel size at the input surface of the scattering

medium, where w0 denotes the beam waist radius. Under a paraxial approximation,

the scalar Gaussian beam can be described at the transverse position, x and axial

position, z, as [161]

EGaussian(x, z) = Eo
wo
w(z)

exp

(
− x2

w2(z)

)
exp

(
ikr2

2R(z)

)
exp

(
i

[
kz − tan−1

(
z

zR

)])
,

(3.44)

where Eo is the amplitude of the wave, k is the free space wavevector and zR is the

Rayleigh distance. For a fixed axial position z, w(z) and R(z) are the beam radius

and wavefront radius of curvature respectively. zR, w(z) and R(z) can be computed
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as

zR =
kw2

o

2

w(z) = wo

√
1 +

(
z

zR

)2

R(z) = z

(
1 +

(
z

zR

)2
)

.

(3.45)

The vector incident fields used to obtain the Mueller matrices are then

~E‖(x, z) =


0

EGaussian(x, z)

0

 , ~E⊥(x, z) =


EGaussian(x, z)

0

0

 . (3.46)

Equations 3.44 and 3.46 hold only under the paraxial approximation (i.e. kx � k).

Smaller beam waists have larger divergence, and a full vectorial description would be

required. In view of computational efficiency, the analytical form of Equation 3.44

was used, as the field has to be calculated at the point of each dipole and detector.

The half-angle divergence of the beam, ∆θ, for a given beam waist can be calculated

as

∆θ =
λ0

πnwo
, (3.47)

where n is the refractive index of the medium of propagation. Using Equation

3.47 and the simulation parameters described in Section 3.2.1, the divergence angles

corresponding to the beam waists used in this study were calculated and are shown

in Table 3.2 below. It can be seen that the largest beam divergence is 0.004 radians.

Given the small divergence angle, the paraxial approximation can be made, thus

corroborating the use of Equations 3.44 and 3.46.

d = 2wo / µm 100 150 200 250 300

∆θ / rad 0.004 0.003 0.002 0.002 0.001

Table 3.2: Beam divergences computed using Equation 3.47 for the beam waists used
in this study.
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3.2.2 Spatial Invariance of the Scattering Medium’s Mueller

Matrix

In Section 3.1.3, it was proposed that for a large enough pixel size, the Mueller

matrix of the scattering medium, MSM , is independent of the specific instance of

disorder. For such pixel sizes, each pixel consists of contributions from many dif-

ferent instance of disorder, such that the measured Mueller matrix from each pixel

is inherently an ensemble average. This, in turn, implies that MSM is also pixel-

independent. Here, this claim is investigated using numerical simulations based on

the 2D coupled line dipole formalism introduced in Section 3.2.1.

Simulation Results

The Mueller matrix for each output pixel was computed for 200 random config-

urations of cylinders, which were simulated according to the simulation parame-

ters in Table 3.1. A single input pixel was used, with varying pixel widths of

2wo = {100, 150, 200, 250, 300}µm. For each thickness, pixel size and instance of

disorder, the Mueller matrix, as would have been measured by a photodiode, was

then computed as the intensity sum over all output pixels. The change in the Mueller

matrix over different instances of disorder was evaluated for each individual element

of the Mueller matrix, by computation of the coefficient of variation (CV). For the

(i, j)th Mueller matrix element, the CV is defined as

CVij =
σij
〈Mij〉

(3.48)

where σij and 〈Mij〉 denote the standard deviation and mean of the (i, j)th Mueller

matrix element respectively. An average CV across all matrix elements was also

computed by taking the square root of the sum of squares of the CV for each

Mueller matrix element. This result is shown in Figure 3.5, while Figure 3.6 shows

the result for each Mueller matrix element as a function of pixel size. The empty

elements in Figure 3.6 have a mean value of zero.
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Figure 3.5: Average coefficient of variation across all Mueller matrix elements as a
function of illumination pixel size for different medium thicknesses, ζ, calculated using

200 iterations.
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Figure 3.6: Coefficient of variation as a function of illumination pixel size for different
medium thicknesses, ζ, calculated using 200 iterations. The empty elements have mean

values of zero. Plot legend follows that of Figure 3.5.

Figure 3.6 shows that the coefficient of variance decreases non-linearly with pixel

size, tailing off asymptotically at about 200 microns. Figure 3.5 demonstrates the
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same trend, and shows that at the largest pixel size tested (300 microns), the average

CV was between 0.05 to 0.1 across the three values of ζ. Therefore, as the pixel size

increased, the Mueller matrix became less dependent on the instance of disorder. In

addition, it was observed that thicker scattering media required larger pixel sizes to

arrive at the same CV. In the next part of this section, the origin of this decrease is

discussed.

One might be tempted to interpret this data quantitatively. For example, if a pixel

size of 300 microns was used, an average variation of 5 to 10% can be expected in the

scattering medium’s Mueller matrix elements for the three thicknesses considered.

It should be noted, however, that considering the differences between the scattering

media used in the simulations and the experiments described in Chapter 4, these

quantitative values obtained cannot be directly translated to the experimental re-

sults. This is discussed further in the final section of this chapter. Nevertheless, the

trends observed in the simulation are still representative of what should be expected

in the experiments.

Further Insights

A mathematical model is now proposed to provide further insight into the simula-

tion results obtained. To begin, an expression for the measured Mueller matrix from

a single input pixel and a single instance of disorder is first derived. The following

analysis is generalised to a 3D geometry. Nevertheless, the conclusions also hold for

the reduced 2D geometry of the simulation, where the scattering medium is taken

to extend infinitely in the third dimension (i.e. y).

The electric fields at the front and back surfaces of the scattering medium, across

all input and output pixels, are related by the vector transmission matrix according

to Equations 3.9 and 3.10. To compute the outgoing fields from a single input pixel,

the integral form of Equation 3.9 is used. This can be written as

~Eout(~r2) =

∫ ∞
−∞

T(~r1, ~r2) ~Ein(~r1) d~r1 , (3.49)
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where ~r1 and ~r2 are the transverse spatial co-ordinates of the input and output

surfaces of the scattering medium respectively, and ~Ein(~r1) describes the incident

field from the single input pixel being considered. As before, T(~r1, ~r2) is a 2 × 2

matrix relating the field from a point source input at ~r1 to the transmitted field at

the point ~r2, with the subscript “SM” suppressed for brevity. It should be noted

that the two-dimensional transverse co-ordinates, ~r1 and ~r2, should not be confused

with the three-dimensional vectors, ~r and ~r
′
, from earlier in this section. It follows

that the coherency vector, ~Cout(~r2), for each output point is

~Cout(~r2) = 〈 ~Eout(~r2)⊗ ~Eout, ∗(~r2)〉t

=

∫∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)(

~Ein(~r1)⊗ ~Ein, ∗(~r
′

1)
)
d~r1 d~r

′

1 ,
(3.50)

where the assumption of a static scattering medium illuminated by a fully coherent

light source has been made. If, as in an experiment, the polarisation of the incident

field is constant across the extent of the pixel, then

~Ein(~r1)⊗ ~Ein, ∗(~r
′

1) =

√
I(~r1) ~Ein

0 ⊗
√
I(~r

′
1) ~Ein

0

= h
(
~r1, ~r

′

1

)(
~Ein

0 ⊗ ~Ein, ∗
0

)
,

(3.51)

where ~Ein
0 is the Jones vector of the incident field that has been normalised to unit

intensity, I(~r1) =
∣∣∣ ~Ein(~r1)

∣∣∣2 is the intensity at ~r1, and h(~r1, ~r
′
1) =

√
I(~r1)I(~r

′
1) ac-

counts for a spatial variation of the incident intensity. With Equation 3.51, Equation

3.50 becomes

~Cout(~r2) =

(∫∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)
h(~r1, ~r

′

1) d~r1 d~r
′

1

)(
~Ein ⊗ ~Ein, ∗

)
=

(∫∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)
h(~r1, ~r

′

1) d~r1 d~r
′

1

)
~Cin .

(3.52)

Converting from coherency to Stokes vectors using Equation 2.32,

~Sout(~r2) = Γ

(∫∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)
h(~r1, ~r

′

1) d~r1 d~r
′

1

)
Γ−1~Sin

= m(~r2)~Sin .

(3.53)
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Thus, the Mueller matrix for each output position, m(~r2), can be written as

m(~r2) = Γ

(∫∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)
h(~r1, ~r

′

1) d~r1 d~r
′

1

)
Γ−1 . (3.54)

The measured Mueller matrix is an integration over all output points. Therefore,

for a single input pixel, the measured Mueller matrix is given by

MSM =

∫
S

m(~r2) d~r2

= Γ

(∫
S

∫ ∞
−∞

∫ ∞
−∞

(
T(~r1, ~r2)⊗T∗(~r

′

1, ~r2)
)
h(~r1, ~r

′

1) d~r1 d~r
′

1 d~r2

)
Γ−1 ,

(3.55)

where S is the integration area on the output surface of the scattering medium. If

m(~r2) was a statistically stationary random variable, that is, 〈m(~r2)〉 = 〈m(~r2 −
∆r)〉 = 〈m〉, then MSM , for a sufficiently large S, can be seen to approximate 〈m〉
under an ergodic assumption. Here, 〈...〉 denotes an ensemble average, or in other

words, an average over instances of disorder. In such a situation, MSM is thus in-

dependent of the instance of disorder, and in turn, the input pixel position. This

investigation, therefore, turns to the stationarity of m(~r2).

Taking the ensemble average of Equation 3.54, 〈m(~r2)〉 is given by

〈m(~r2)〉 = Γ

(∫∫ ∞
−∞

Π(~r1)Π(~r
′

1)〈T(~r1, ~r2)⊗T∗(~r
′

1, ~r2)〉 d~r1 d~r
′

1

)
Γ−1 . (3.56)

where Π(~r1) =
√
I(~r1). Furthermore, assuming that T is a statistically stationary

random variable, such that 〈T(~r1, ~r2)〉 = 〈T(~r1 − ∆r, ~r2 − ∆r)〉 = 〈T(~r1 − ~r2, 0)〉,
Equation 3.56 can be written as

〈m(~r2)〉 = Γ

(∫∫ ∞
−∞

Π(~r1)Π(~r
′

1)〈T(~r1 − ~r2, 0)⊗T∗(~r
′

1 − ~r2, 0)〉 d~r1 d~r
′

1

)
Γ−1 .

(3.57)

In an extreme scenario, if the incident illumination was a plane wave (i.e. an in-

finitely large pixel), then Π would just be a constant function, and Equation 3.56
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would be reduced to

〈m(~r2)〉 = Γ

(∫∫ ∞
−∞
〈T(~r1 − ~r2, 0)⊗T∗(~r

′

1 − ~r2, 0)〉 d~r1 d~r
′

1

)
Γ−1 , (3.58)

which is independent of ~r2. In this case, m(~r2) is stationary and MSM is independent

of the instance of disorder and input pixel location. At the other extreme, if the

illumination was a point source at ~ro (i.e. an infinitely small pixel), Π would be a

delta function, such that Equation 3.57 becomes

〈m(~r2)〉 = Γ

(∫∫ ∞
−∞

δ(~r1 − ~ro)δ(~r
′

1 − ~ro)〈T(~r1 − ~r2, 0)⊗T∗(~r
′

1 − ~r2, 0)〉 d~r1 d~r
′

1

)
Γ−1

= Γ 〈T(~ro − ~r2, 0)⊗T∗(~ro − ~r2, 0)〉 Γ−1 ,

(3.59)

which is not independent of ~r2. From these observations, a natural question then

arises - is there a pixel size above which m(~r2) is, or can at least be approximated

to be, stationary?

Via a change of variables, Equation 3.57 can be re-written as

〈m(~r2)〉 = Γ

(∫∫ ∞
−∞

Π(~r1)Π(~r
′

1)〈T(~r1 − ~r2, 0)⊗T∗(~r
′

1 − ~r2, 0)〉 d~r1 d~r
′

1

)
Γ−1

= Γ

(∫∫ ∞
−∞

Π(~r1)Π(~r
′

1)C(~r1 − ~r2, ~r
′

1 − ~r2) d~r1 d~r
′

1

)
Γ−1

= Γ

(∫∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ
′

12 + ~r2)C(~ρ12, ~ρ
′

12) d~ρ12 d~ρ
′

12

)
Γ−1

= Γ

(∫ ∞
−∞

Π(~ρ
′

12 + ~r2)

[∫ ∞
−∞

Π(~ρ12 + ~r2)C(~ρ12, ~ρ
′

12) d~ρ12

]
d~ρ
′

12

)
Γ−1 ,

(3.60)

where ~ρ12 = ~r1 − ~r2 and ~ρ
′
12 = ~r

′
1 − ~r2. In addition, C(~r1 − ~r2, ~r

′
1 − ~r2) = 〈T(~r1 −

~r2, 0)⊗T∗(~r
′
1−~r2, 0)〉 can be interpreted as the correlation between the speckle field

at a fixed output point, ~r2, from two input points, ~r1 and ~r
′
1. Equation 3.60 can be

seen to be a double cross-correlation integral between C and Π.
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To gain further intuition about the shape of 〈m(~r2)〉, the integral

f(x2) =

∫ ∞
−∞

Π(∆x + x2)Cij(∆x, 0) d∆x , (3.61)

was plotted. This 1D cross-correlation function can be seen to be a simplified ver-

sion of Equation 3.60, relating to the cross-correlation integral enclosed within the

square brackets in the final expression of Equation 3.60 in the plane (y1 − y2) = 0,

such that ~ρ12 = [x1 − x2, y1 − y2]> = [x1 − x2, 0]> = [∆x, 0]>. In addition, Equation

3.61 corresponds to taking the integral in the square brackets of Equation 3.60 at

~ρ
′
12 = [x

′
1−x2, y

′
1−y2]> = ~0. Furthermore, as C is a matrix, the result of the integral

is also a matrix, and Equation 3.61 can be understood as plotting only one of the

elements of that matrix.

The correlation function Cij was assumed to be a Gaussian with a standard de-

viation of σ, corresponding to the decay of the correlation function as ∆x departs

from ∆
′
x = x

′
1 − x2 = 0. On the other hand, the pixel was assumed to be uniformly

illuminated, such that Π(∆x) is given by

Π(∆x) =

1 (∆x + x2) ∈ Ω

0 otherwise,
(3.62)

where Ω denotes the pixel area. The resulting cross-correlation is shown in Figure

3.7.
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(a) Width of Ω = 0.1 , σ = 0.1

(b) Width of Ω = 0.5 , σ = 0.1

(c) Width of Ω = 0.1 , σ = 0.5

Figure 3.7: Illustration showing the shape of f(x2) for different widths (in arbitrary
units) of Π and Cij . Left: Original functions, Right: Cross-correlation result.

From Figure 3.7, it can be seen that the wider function dominates the shape of the

cross-correlation. The 1D plots shown in Figure 3.7 can be generalised to Equation
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3.60, so that the same behaviour can be expected from the described double cross-

correlation. As such, if the width of Π is much larger than the width of each matrix

element in C, it can be expected that the shape of 〈m(~r2)〉 is similar to the shape

of Π. In this regime, C(~ρ12, ~ρ
′
12) can be approximated as a delta function, so that

Equation 3.60 becomes

〈m(~r2)〉 ≈ Γ

∫∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ
′

12 + ~r2)δ(~ρ
′

12 − ~ρ12)δ(~ρ12)Co d~ρ12 d~ρ
′

12Γ
−1

= Γ |Π(~r2)|2 CoΓ
−1 ,

(3.63)

where Co is a matrix without any dependence on ~r2. From this equation, it can be

seen that when the width of Π is much larger than the width of C, the dependence of

〈m(~r2)〉 on ~r2 comes wholly from the scalar amplitude variation of the illumination.

This implies that

〈m(~r2)〉 = bo(~r2, ~r2 + ∆r)〈m(~r2 + ∆r)〉 = bo(~r2, 0)〈m(~0)〉 = bo(~r2)〈m〉 (3.64)

where bo is a position-dependent scalar constant. The scalar constant only affects

the unpolarised intensity transmission, while polarimetric properties, such as diat-

tenuation, retardance and depolarisation, are derived from the Mueller matrix 〈m〉.
As such, 〈m(~r2)〉 can be considered to be stationary in terms of its polarisation

properties. Consequently, it can be deduced that the use of Equation 3.55 gives

an estimate of the 〈m〉, but with a scalar proportionality factor depending on the

intensity variation of the incident illumination. As a result, for a large enough pixel

size, MSM is independent of instance of disorder and input pixel position.

Factors Affecting the Minimum Pixel Size

But how large does the pixel (i.e. the width of Π) have to be? As discussed, this is

governed by the width of C, which is, in turn, dependent on two factors. The first

factor is how far apart two input points can be before the individual contributions

to the speckle field at the same output point becomes uncorrelated. This distance

is denoted as Cr1 . If this distance is small with respect to the pixel size, then the

approximation C(~r1 − ~r2, ~r
′
1 − ~r2) ≈ δ(~ρ

′
12 − ~ρ12)C(~ρ12) can be made, such that the
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double integral in Equation 3.60 can be written as

〈m(~r2)〉 ≈ Γ

(∫∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ
′

12 + ~r2)δ(~ρ
′

12 − ~ρ12)C(~ρ12) d~ρ12 d~ρ
′

12

)
Γ−1

= Γ

(∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ12 + ~r2)C(~ρ12) d~ρ12

)
Γ−1

=

∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ12 + ~r2)mp(~ρ12) d~ρ12 ,

(3.65)

where

mp(~ρ12) = ΓC(~ρ12)Γ−1

= Γ〈T(~r1 − ~r2, 0)⊗T∗(~r1 − ~r2, 0)〉Γ−1

= Γ〈T(0, ~r2 − ~r1)⊗T∗(0, ~r2 − ~r1)〉Γ−1 ,

(3.66)

where the equivalence of the second and third expressions comes from the previous

assumption made, that T is a statistically stationary random variable. Comparing

the form of mp(~ρ12) in Equation 3.66 to Equation 3.59, it can be seen that mp

can be interpreted as the ensemble averaged Mueller matrix for the output point

at ~r2 − ~r1, due to a point source at ~0. The (0, 0) element of any Mueller matrix

is its unpolarised transmittance [139]. As such, for any input point source, the

(0, 0)th element of mp(~ρ12) describes the intensity profile of the diffused spot at the

output surface of the scattering medium, which modulates all elements of mp(~ρ12).

Thus, the second factor affecting the minimum pixel width is the width of the

ensemble-averaged intensity profile from an incident point source, denoted as Cr2 .

If the pixel width is much larger than Cr2 , then mp(~ρ12) can be approximated as

mp(~ρ12) ≈ δ(~ρ12)m0, such that Equation 3.65 can be written as

〈m(~r2)〉 ≈
∫ ∞
−∞

Π(~ρ12 + ~r2)Π(~ρ12 + ~r2)δ(~ρ12)m0 d~ρ12

= |Π(~r2)|2 m0

= Γ |Π(~r2)|2 C0Γ
−1 ,

(3.67)

thereby arriving back at Equation 3.63, with m0 = ΓC0Γ
−1. Thus, for a single

instance of disorder, the smallest pixel size required such that the measured Mueller

matrix becomes independent of the specific instance of disorder depends on two cor-

relation lengths - the smallest distance between input points such that the speckle at
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a given output point becomes uncorrelated and the width of the ensemble-averaged

Mueller matrix from a point source. The requirement of a pixel size larger than Cr2

may seem overly restrictive, particularly for thick scattering media. Nonetheless,

for scattering media that demonstrate a high degree of forward scattering, as in the

case of most biological tissues [8], only a small divergence of the scattered beam

is expected, so it is possible that a reasonable combination of depth and pixel size

can still be achieved. Moreover, as discussed in Section 3.1.3, the minimum pixel

size can potentially be reduced further by combining spatial and temporal averaging

over different instances of disorder.

The width of Cr1 for the scattering media corresponding to the results shown in

Figures 3.5 and 3.6 was investigated using the 2D coupled line dipole simulation

described in Section 3.2.1. The simulation geometry is summarised in Figure 3.8.

Figure 3.8: Simulation geometry used to investigate the width of Cr1 .

In two dimensions, the correlation function, C, can be written as

C(∆x,∆
′

x) = 〈T(x1 − x2, 0)⊗T∗(x
′

1 − x2, 0)〉

= 〈T(x1, x2)⊗T∗(x
′

1, x2)〉
(3.68)

where ∆x = x1 − x2 and ∆
′
x = x

′
1 − x2. To compute C, the output far-field

speckle was firstly computed as a line dipole was moved transversely across the front

106



3.2 Simulations

surface of the medium. Two incident polarisations, parallel and perpendicular to

the cylinder axis, were simulated by setting the dipole moments to ~p inc‖ = [1, 0, 0]>

and ~p inc⊥ = [0, 1, 0]> respectively. The Jones matrix was then computed for each

input position from the obtained speckle fields, for a fixed output point on axis

(i.e. x2 = 0). Then, taking the input point on axis as reference (i.e. x1 = 0),

C(∆x,∆
′
x) was calculated from the elements of the Jones matrices as an average

over 250 configurations of cylinders. Figure 3.9 shows the elements of the resulting

matrix as a function of the separation between input points, where for each value

of ζ, each element has been normalised to the maximum correlation value across all

elements.
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Figure 3.9: C(∆x,∆
′
x) at a fixed output point (x2 = 0) as a function of separation

between input points for ζ = 1 (blue), ζ = 2 (red) and ζ = 3 (yellow).

From this Figure 3.9, it can firstly be seen that some of the elements in C(∆x,∆
′
x)

are zero. This is because, as discussed in Section 3.2.1, when incident light is trav-

elling at normal incidence to the cylinder axis, no cross-polarisation between the

field components that are parallel and perpendicular to the cylinder axis occurs. As

such, the Jones matrix is inherently diagonal with off-axis elements that are equal to

zero, and elements in C(∆x,∆
′
x) with contributions from these off-axis elements of

the Jones matrix would also be equal to zero. The second observation from Figure
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Chapter 3: Single Pixel Polarimetric Imaging

3.9 is that there is a non-zero background in the correlation function for the non-

zero elements of C(∆x,∆
′
x). This can be attributed to the presence of a ballistic

component that decreases with medium thickness. Finally, the non-zero elements

of C(∆x,∆
′
x) display a peaked behaviour, with a width of about 0.6 microns for all

three thicknesses tested, which is much smaller than the pixel widths used to obtain

the plots in Figure 3.6 (from 166 to 500 times smaller). As the pixel size gets larger,

the approximation C(x1 − x2, x
′
1 − x2) ≈ δ(∆x −∆

′
x)C(∆x) becomes more valid, so

it can be expected that the variation in the Mueller matrix due to different instances

of disorder decreases with larger pixel sizes. This agrees with the observations of

Figure 3.6.

In the discussion for Figure 3.6, it was noted that for thicker scattering media,

larger pixel sizes are required for the measured Mueller matrix to be independent

of instance of disorder. This is consistent with the second factor that has been

discussed, where the pixel size has to be larger than Cr2 , the ensemble-averaged

intensity profile of a point source. Since the size of the emerging scattered spot

increases with medium thickness, a larger pixel size will be required for the approx-

imation C(x1 − x2, x
′
1 − x2) ≈ δ(∆

′
x −∆x)δ(∆x)Co to be valid.

In summary, the results from numerical simulations demonstrated a decrease in the

variation of the Mueller matrix over different instances of disorder with increasing

pixel size. In addition, for thicker scattering media, a larger pixel size was required

in order to achieve the same decrease in the variation in the Mueller matrix. Using

a mathematical model, it was shown that at pixel sizes larger than the width of the

correlation function of the scattering medium, the Mueller matrix for each output

point can be considered as a stationary random variable, such that the measured

Mueller matrix is an estimate of an ensemble-averaged quantity. Therefore, for a

large enough pixel size, the measured Mueller matrix can be considered to be in-

dependent of disorder. Being an ensemble-averaged quantity, the measured Mueller

matrix is also independent of the input pixel position even for a single instance of

disorder. Finally, two factors affecting the required pixel size were identified. Firstly,

the pixel size has to be larger than the furthest distance between input points that
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preserves the output field correlation. Secondly, the pixel size also has to be larger

than the ensemble-averaged intensity profile from a point source.

3.2.3 Neglecting Interference

In this section, the assumption that interference can be neglected (i.e. that Bml �
Am) is studied using the coupled dipole formalism.

In separate simulations, the speckle field in the far-field from two adjacent input

pixels was simulated over 200 instances of disorder. Figure 3.10 shows the intensity

of the incident illumination at the front surface of a scattering medium for the two

pixels. The pixel widths were set to 200 microns, and the pixels were placed 400

microns apart. From the simulated speckle fields, Am and Bml were computed,

according to Equation 3.13. For each instance of disorder, Am and Bml were nor-

malised by the sum of the (1, 1)th and (4, 4)th element of Am, which corresponds to

the total intensity transmission from the mth pixel across the two input polarisation

states (see Equation 3.14). The magnitude of the elements of both matrices for each

realisation was then plotted in a histogram. Figure 3.11 show the results for the

three thicknesses, ζ = {1, 2, 3}. In all three cases, the values for Am can be seen to

be much greater than those of Bml. As discussed in Section 3.1.3, similar results can

be expected for other pixel sizes, as long as their widths are larger than the width

of the correlation function, C, of the scattering medium. When the pixel size is

smaller than Cr1 , for example, the output speckle from two adjacent input pixels is

correlated across different instances of disorder. As such, the correlations estimated

by the elements of Bml will not be negligible. Thus, for all the cases tested, the

effect of interference can be considered to be negligible.
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Figure 3.10: Intensity of the two pixels used for the simulation.

(a) ζ = 1 (b) ζ = 2

(c) ζ = 3

Figure 3.11: Am (red bars) versus Bml (blue bars). Other than the matrix elements in
the labels of this plot, all other elements lie within the blue part of the histogram.

It should be noted, however, that there could be cases where Bml could become

comparable to Am. One example would be when the illumination corresponding to
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adjacent input pixels overlap. Figure 3.12 shows a histogram generated by the same

simulation parameters as those of Figure 3.11, but this time with the two pixels

spaced only 100 microns apart (see Figure 3.12). It can be seen that the magnitude

of the elements in Bml are comparable with some of the elements in Am, implying

that the correlations between different input pixels become more significant with

the pixel overlap.

Figure 3.12: Intensity of the two overlapping pixels used for the simulation.

Figure 3.13: Am (red bars) versus Bml (blue bars) for ζ = 3 and overlapping pixels.

Pixel overlap could occur, for example, when significant aberrations are present,

such that the resulting point spread function becomes comparable to the size of
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a pixel. In single pixel polarimetric imaging, the spatial masks on the DMD are

imaged onto the test object which is located right next to the scattering medium.

Significant aberrations in the plane of the test object would cause a spreading of the

point spread function, which would cause the pixels to partially overlap. Therefore,

minimising aberrations is important, in order to ensure that the interference term,

Bml, remains negligible. The optical design of the imaging optics used to image the

DMD onto the object plane in this work is discussed in Section 4.2.

3.2.4 Effect of Numerical Aperture

In Sections 3.2.2 and 3.2.3, the validity of the assumptions made in the proposed

model was investigated for a fixed collection numerical aperture (NA) of 0.1. In this

section, the effect of NA on the obtained results is studied.

The simulations presented in Section 3.2.2 were repeated for various values of NA,

for the medium thickness corresponding to ζ = 3. As the speckle was computed in

the far-field, the field at each detector pixel can be interpreted as the plane wave

component propagating in the direction θ ≈ x
z
, or equivalently, different spatial fre-

quencies [101]. Therefore, the results for each NA were obtained by reducing the

size of the full detector correspondingly.

Figure 3.14 compares the average CV that was computed for each NA. In all cases,

the CV was seen to reach an asymptotic value, but it can be seen that this value is

higher for lower values of NA. This is further elucidated in Figure 3.15, which plots

the average CV as a function of NA for the largest pixel size tested (i.e. 2wo = 300

microns). It can be seen that as the NA is reduced, the CV remains constant un-

til the NA is approximately 0.02, at which point the CV increases sharply. This

turning point can be better understood by looking at Figure 3.16, which shows the

detector cut-off for different NA compared to the far-field intensity speckle from a

single instance of disorder for a pixel size of 300 microns. The intensity speckle was

plotted as a function of the detector angle, θ, which as explained above can be re-

lated to different spatial frequencies. From this plot, it can be seen that the spatial

frequencies with the largest amplitudes lie within the NA cut-off of 0.02. Therefore,
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reducing the NA up to 0.02 did not have much effect. When the NA is reduced past

0.02, less of the significant spatial frequencies are sampled. Since spatial frequencies

can be interpreted as spatial modes in the Fourier basis, this implies that there are

less independent spatial modes being collected. As much of the proposed model

depends on the computation of spatial correlations, the reduction of spatial modes

collected has an adverse impact on the validity of the assumptions. In particular,

the assumption that Bml is negligible may not hold. This can be seen in Figure 3.17,

which is a histogram that was generated with the same parameters as that of Figure

3.11c, except this time the collection NA is decreased to 0.01. The interference term,

Bml, becomes comparable to Am. As such, in single pixel polarimetric imaging, the

NA of the collection optics has to be large enough so that there is sufficient sampling

of the spatial modes. Yet, on the other hand, a low collection NA is favoured for

polarimetry so as to minimise the transverse wavevector of the measured electric

field, as the inclusion of light travelling at higher angles would cause an error in the

measured Mueller matrix [152]. A balance, therefore, has to be reached between

these two requirements in the system design.

Figure 3.14: Average coefficient of variation as a function of pixel size for different
values of NA, for the scattering medium with a thickness corresponding to ζ = 3.
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Figure 3.15: Average coefficient of variation as a function of NA for a pixel size of 300
microns incident on a scattering medium with a thickness corresponding to ζ = 3.

Figure 3.16: Plot to illustrate the detector cut-off for different NA over a sample
intensity speckle for a pixel size of 300 microns incident on a scattering medium with a
thickness corresponding to ζ = 3. The vertical bars indicate cut-offs for different choices

of detector NA.
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Figure 3.17: Am (red bars) versus Bml (blue bars) for ζ = 3, with a collection NA of
0.01.

3.3 Discussion

In this chapter, a theoretical imaging model for single pixel polarimetric imaging

was discussed. When the effects of interference are negligible, the detector intensity

is shown to take a form similar to that of single pixel imaging in intensity. Us-

ing a 2D coupled line dipole simulation, negligible interference was observed in the

cases tested. It was also demonstrated, however, that in the presence of significant

aberrations or when the collection optics has a NA that is too low, the effect of

interference can become more significant. Furthermore, the Mueller matrix of the

scattering medium, which in general is a function of input pixel position, was shown

to become less dependent on the instance of disorder as the pixel size increased. All

of these are important factors that should be considered in the system design.

Given that the simulations were conducted in 2D with line dipoles scatterers, and

with different scattering parameters to those of the experiments (see Section 4.6),

one might ask, fairly, how the conclusions of the numerical simulations would relate

to the experiment. For example, the matrix elements of C(∆x,∆
′
x) that are equal

to zero in Figure 3.9 would not be zero in a 3D geometry, since polarisation mixing
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would occur. Nevertheless, since the 2D simulation is but a 3D simulation with an

invariance in one of the dimensions (due to scatterers that extend to infinity in said

dimension), it is expected that the physical trends observed in the simulation should

still be representative of the experiment. Nonetheless, given the differences between

the simulation and the experiment, the length scales at which these trends occur,

as well as the absolute values obtained in the simulations, such as the minimum CV

attained, and would likely be different from those of the experiment. For example, in

2D, the measured Mueller matrix from a “line pixel” is an average over N instances

of disorder, where N is the number of independent input modes contained within

the “line pixel”. In contrast, in the 3D geometry, the measured Mueller matrix from

a square pixel with a width equal to the length of the “line pixel” is an average over

N2 instances of disorder. As such, for a fixed thickness, a smaller pixel size may

be required in the 3D geometry to have a spatially invariant Mueller matrix of the

scattering media.
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Experimental Methods

In the previous chapter, an imaging model for single pixel polarimetric imaging

through scattering media was discussed and investigated via numerical simulations.

This chapter discusses the experimental methods that were used for the practical

implementation of the proposed technique.

Firstly, Section 4.1 presents the single pixel polarimetry imaging setup. The optical

design of the setup is then explained in Section 4.2, while the calibration process

is detailed in Section 4.3. The procedures for acquiring and processing the data

obtained from the imaging system are then described in Section 4.4 and 4.5 respec-

tively. In particular, measures taken to improve the system’s SNR are discussed.

Given the low light levels associated with transmission measurements of scatter-

ing media, such measures are important to reduce the uncertainty in the obtained

results. Finally, in Section 4.6 the preparation and characterisation of the scatter-

ing samples used in the experiments, biological phantoms and chicken breast, are

detailed.

4.1 Single Pixel Polarimetry Setup

The experimental setup used for this work is shown in Figure 4.1, followed by a

description of the lenses used in Table 4.1. Following the terminology of Section 2.2,

the system can be classified into four main parts - the PSG, the object, the PSA
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and the detectors. In this section, the components within each of these parts are

described in detail.

Figure 4.1: Experimental setup. Key: variable waveplate (VWP), beamsplitters (BS),
lens (L), pinhole (P), quarter waveplate (QWP), linear polariser (LP), detectors (D),
mirror (M), digital micromirror device (DMD). Details about the lenses, such as their

focal length and model number, can be found in Table 4.1.

Lens number Focal length/mm Component details

L1 50 Linos Photonics 322339000

L2 200 Linos Photonics 322353000

L3 30 Thorlabs AC254-030-A-ML

L4 200 Thorlabs AC254-200-A-ML

L5 100 Thorlabs AC254-100-A-ML

L6 50 Thorlabs AC254-50-A-ML

L7 120 Linos Photonics 322309322

Table 4.1: Focal length of the lenses used. All lenses used were achromatic doublets.
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4.1.1 The Polarisation State Generator

The PSG generates the input polarisation states used for polarimetry, and can be

described by the matrix W. The columns in W correspond to the Stokes vectors

of the input polarisation states. These different input polarisation states are time-

modulated and can be generated in many ways, such as through the use of rotating

polarisers and/or retarders [151, 162, 163], photo-elastic modulators [164], Pockel’s

cells [165, 166], or liquid crystal variable waveplates (LCVWP) [131, 167, 168]. In

particular, LCVWPs have been widely employed in Mueller matrix polarimeters, as

they offer an easy and affordable means of automating the setup. LCVWPs make

use of optically anisotropic liquid crystals. The application of an external electric

field causes individual molecules in the liquid crystal to change in orientation, which

in turn modifies the birefringence of the liquid crystal cells. Consequently, depend-

ing on the applied voltage and the orientation of the incident polarisation relative

to the fast axis of the liquid crystal cell, light travelling through the cell experiences

different phase shifts. As such, the input polarisation state can be changed simply

by altering the applied voltage. LCVWPs also have the advantage of possessing

no mechanically moving parts, and also require only low driving voltages (typically

tens of volts). As such, in this work, LCVWPs were chosen for the modulation of

the input polarisation state.

The input states were generated by passing a y-polarised beam (Cobolt, MLD638 )

through two LCVWP (Arcoptix, 20mm aperture), denoted VWP A and VWP B.

The intensity of the y-polarised beam was temporally modulated for lock-in detec-

tion, as detailed in Section 4.4. The variable waveplates introduce a changeable

phase shift along their fast axis depending on the voltage applied. Before use, the

waveplates were individually calibrated to obtain the relationship between the ap-

plied voltage and the induced phase shift [169, 170]. This was done by placing each

variable waveplate between crossed polarisers, with the fast axis of the waveplate

oriented at 45◦. The transmittance, T , of a light beam propagating through this

setup can be related to the induced phase shift, δ, as

T (δ) =
I(δ)

Imax
=

1

2
(1− cos(δ)) , (4.1)
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where I is the intensity measured by a detector when a phase shift of δ is applied,

and Imax is the maximum intensity, which is obtained when δ = π. Hence, by

changing the applied voltage in a known manner and measuring the corresponding

intensities, the related phase shifts can be obtained using Equation 4.1. In this way,

the calibration of the waveplates was accomplished.

In theory, any arbitrary polarisation state can be generated by the pair of vari-

able waveplates, but, as discussed in Chapter 2, the input polarisation states used

for polarimetry need to be chosen carefully in order to optimise the polarimeter per-

formance. In the literature, it has been shown that the minimum condition number

of W that can be obtained using two variable waveplates is
√

3 [131]. This can be

achieved when

(i) the fast axes of VWP A and VWP B are oriented at 27.4◦ and 72.4◦ respec-

tively, with respect to the transmission angle of the incident polarisation, and

(ii) the phase shifts applied by VWP A and VWP B to generate the four input

polarisation states are as shown in Table 4.2.

Input 1 Input 2 Input 3 Input 4

VWP A 3π
4

3π
4

7π
4

7π
4

VWP B 3π
4

7π
4

3π
4

7π
4

Table 4.2: VWP phase shifts applied to generate the optimal set of four input
polarisation states.

Therefore, to minimise the condition number of W, these settings were used in the

PSG for this work. With this configuration, the theoretical form of W is given by

Wtheory =


1.00 1.00 1.00 1.00

0.94 0.00 −0.47 −0.47

0.33 −1.00 0.33 0.33

0.00 0.00 −0.82 0.82

 . (4.2)

After passing through the two waveplates, the polarised beam was prepared for illu-

mination onto a SLM to generate the spatial masks needed for single pixel imaging.
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SLMs are devices that enable the variation of light amplitude, phase or polarisation

in space and time. In single pixel imaging, liquid crystal based SLMs (LCSLM) and

DMDs are commonly used as SLMs. LCSLMs are based on the same working prin-

ciple as LCVWPs, with the optically anisotropic liquid crystal molecules allowing

the birefringence of the cell to be varied depending on the input voltage. Unlike a

LCVWP, however, LCSLM consists of many independent liquid crystal cells. As the

voltage to each cell on a LCSLM can be independently controlled, spatially varying

phase modulation of the incident beam can be achieved. If amplitude modulation is

desired, additional polarisers have to be used before and after the LCSLM, typically

in a cross-polarised arrangement. In contrast, a DMD chip consists of many mi-

croscopic mirrors that can be electronically rotated to two discrete angles, typically

±10− 12◦, corresponding to an “ON” or “OFF” state [35, 171]. Depending on the

state of the mirror, light is directed in one of two directions, thereby enabling binary

amplitude modulation of the incident light field. Comparing the two technologies,

LCSLMs offer more flexibility in modulation than DMDs, both in terms of modula-

tion depth and modulation modes. In addition, LCSLMs have a higher diffraction

efficiency, which directly affects the throughput of the optical system. For example,

Turtaev et al. [172] measured a diffraction efficiency of 8% from a DMD, compared

to 42% by a LCSLM. Yet, DMDs are able to operate at much faster speeds with typ-

ical binary pattern rates of tens of kilohertz, compared to only hundreds of hertz in

LCSLMs [172, 173]. The rate at which spatial masks can be applied is directly cor-

related with the acquisition time for single pixel imaging, and is thus an important

factor to consider in relation to practicality, particularly for biological applications,

which exhibit variations at millisecond timescales [104, 105]. Moreover, DMDs are

more cost effective than LCSLMs, therefore making them an attractive choice for

building economical yet functional imaging platforms. In view of these advantages,

alongside the consideration that binary modulation is sufficient for single pixel po-

larimetric imaging, this work employs a DMD (Texas Instruments, DLP4500 ) as a

SLM.

It is important to ensure that the beam illuminating the DMD is spatially homo-

geneous to minimise SNR ratio differences across pixels in the final image, in order
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to avoid a variation in the polarisation sensitivity for different pixels. As the diode

laser used in this experiment did not demonstrate good beam quality, the laser beam

had to be expanded and spatially filtered before it could be used to illuminate the

DMD. Unfortunately, this meant that the throughput of the setup was decreased.

Beam magnification was achieved via two beam expanders (Lenses L1 to L4), which

provided a combined magnification of m = 26. To spatially filter the beam, a pin-

hole with a diameter of 15µm was included at the focal point of L3, which has a

diffraction limited focal spot size of 13.67 microns. These steps resulted in a maxi-

mum to minimum intensity difference of 50% across the field of view (see Section 5.2

for experiment results). The expanded and filtered beam was then directed towards

the DMD. As the DMD consists of a periodic array of micromirrors, it behaves sim-

ilarly to a blazed diffraction grating. The interference between the reflected light

from each mirror causes the light to appear in different diffraction orders, with the

intensity of each order dependent on the angle of the incident illumination. In order

to maximise the light transmitted to a single diffraction order, the laser beam was

directed towards the DMD at an incident angle of 31◦, with the angle of incidence

adjusted via mirrors M1 and M2. This maximised the light transmitted to the third

diffraction order [174]. Residual light in other orders were eliminated using beam

blocks. The third diffraction order was then reflected by mirror M3 and imaged onto

the object plane using lenses L5 and L6. Details on the lenses used in the PSG are

shown in Table 4.1.

4.1.2 The Objects

Both spatially homogeneous and heterogeneous objects were utilised in this work to

test the single pixel polarimetric setup. During measurement, the test object in use

was placed in the object plane. The spatially homogeneous objects used were a linear

polariser (Thorlabs, LPVISE2×2 ) and a quarter waveplate (Thorlabs, WPQ10E-

546 ). After verifying the proposed polarimetric imaging technique on these test

objects, the technique was further tested on a spatially inhomogeneous test object,

which was a letter R that was printed on a soda lime glass substrate using low-

reflectivity chrome (Thorlabs, Multi-Frequency Grid Distortion Target R1L3S3P).

A sheet linear polariser (Thorlabs, LPVISE2×2 ) and scotch tape (3M, Scotch c© Easy
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tear tape), which acts as a retarder, was adhered to opposite sides (see Figure 4.2).

This test object was chosen because of its spatial variation as well as the distinct and

known polarisation properties of the three regions, which facilitates the assessment

of the spatially resolved Mueller matrix. The images obtained with and without

the scattering medium can be compared, while the letter R further highlights the

setup’s ability in retrieving the spatial information of the object.

Figure 4.2: Test target used for proof-of-concept experiments.

4.1.3 The Polarisation State Analyser and Detectors

The PSA measures the output polarisation state, and can be described by the in-

strument matrix, A, whose rows are the Stokes vectors corresponding to the output

polarisation states analysed. As discussed in Section 2.2, multiple measurements

of different analyser states are required to determine the polarisation state of the

measured light field. To obtain these measurements, many configurations for the

PSA have been proposed in literature (see [175] for a review). These can be broadly

classified into a few categories based on their operating principle. The first cate-

gory consists of division of wavefront polarimeters (DOWP) [176, 177, 178], which

spatially subdivide the incoming wavefront into different segments, such that light

in each segment passes through separate polarisation analysers and detectors. In

this way, DOWPs allow measurements to be taken simultaneously, thus avoiding

potential errors caused by temporal discrepancies in the acquired data. Moreover,

DOWPs are compact, thereby allowing for easier miniaturisation of the system.

Nevertheless, DOWPs tend to require specialised optics, such as a microarrays of

123



Chapter 4: Experimental Methods

lenses or polarimetric elements, and as such can be more costly to build.

Instead of dividing the incident wavefront, division of amplitude polarimeters (DOAP)

[179, 180, 181] obtain the multiple measurements needed by splitting the light us-

ing optical components, such as prisms and beamsplitters . Similar to DOWPs,

the main advantage of DOAPs is that synchronous measurements of the incident

polarisation state can be made. In addition, DOAPs can be built economically, us-

ing off-the-shelf components such as beamsplitters, polarisers and waveplates. Yet,

alignment with DOAPs can be tricky, particularly when imaging detectors are used,

to ensure good spatial registration of the acquired images in each analyser arm.

Finally, division of time polarimeters (DOTP) [4, 131, 151, 163] function by modu-

lating the analysed polarisation state in time, for example through the use of rotating

analysers. The obvious drawback to DOTPs is that the incident polarisation has

to remain static over the observation time, but this comes with the benefit of less

hardware, making them easier and potentially more cost-effective to build, especially

in a small package.

Real scattering media, such as biological tissue, are dynamic. Therefore, due to

the temporal variability of their scattering properties, synchronous measurements

are generally preferred to minimise the temporal misregistration between different

measurements. Between DOWP and DOAP, the latter is attractive due to its sim-

plicity and cost-effectiveness. Furthermore, in single pixel polarimetric imaging, the

constraint on alignment is relaxed due to the use of single pixel detectors with no

spatial resolution. As such, this work opted for the use of a DOAP.

A schematic of the PSA used is shown below in Figure 4.3. As explained in Section

2.2, at least four output analyser states are necessary to determine the incoming

Stokes vector. More than four analyser states can also be used to form an overde-

termined set of linear equations, which can be useful in the case of noise [133]. This

comes, however, at the cost of signal strength, as the incident light would have to

be divided into more parts. Therefore, in this work, four output polarisation states
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were analysed. These were, specifically, linearly polarised light in x, y and 45◦, as

well as left circularly polarised light. The advantage of such a setup is that it can

be implemented easily with just beamsplitters, quarter waveplates and linear po-

larisers. The incident beam was split into four paths through the use of three 50-50

non-polarising beamsplitters. Beamsplitters of equal splitting power were used to

minimise the condition number of the related instrument matrix [129, 182]. To anal-

yse the x and y linearly polarised states, linear polariser sheets were used (Thorlabs,

LPVISE2×2 ), while the 45◦ linear polarisation state was analysed using a mounted

linear polariser (Thorlabs, LPVISE100-A). The analyser optics for left circularly

polarised light consisted of a quarter waveplate (Thorlabs, WPQ10M-633 ) in a hor-

izontal orientation, followed by a linear polariser (Thorlabs, LPVISE100-A) at −45◦.

This configuration results in a theoretical instrument matrix given by

Atheory =


1.00 1.00 0.00 0.00

1.00 −1.00 0.00 0.00

1.00 0.00 1.00 0.00

1.00 0.00 0.00 −1.00

 , (4.3)

which has a condition number of 3.23. For comparison, Tyo et al. showed that the

minimum condition number for a PSA measuring four output analyser states was
√

3 ≈ 1.73 [183]. Although other PSA architectures with lower condition numbers

are possible, this design was chosen as it can be constructed economically with off-

the-shelf components.

Light from the object passed through the PSA, and was imaged onto the four detec-

tors (Thorlabs, PDA100A) via lens L7 (see Table 4.1 for lens details). The design

distances from the object plane to lens L7 and from lens L7 to each detector were

equally 240 mm. A low collection NA is necessary to minimise the axial component

of the electric field, or equivalently the transverse component of the wavevector, in

the light collected, as it is not well accounted for by typical polarising elements, such

as those that have been used in the PSA. On the other hand, the results of Section

3.2.4 showed that the variance in the Mueller matrix across different instances of

disorder and across different pixels is higher for lower NA. A balance between these
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two factors is needed in the selection of the NA. To this end, the values of NA used

in the simulation in Section 3.2.4 can serve as guide, but the absolute values are

unlikely to correspond to the experiment due to the two-dimensional nature of the

simulation. For this setup, the NA was empirically chosen to be 0.05. Equivalently,

Lens L7 had a collection half-angle of 3◦.

Figure 4.3: The layout of the PSA. Key: beamsplitters (BS), quarter waveplate
(QWP), linear polariser (LP), detectors (D), lens (L).

Finally, the detectors measured the resulting intensity after propagation through the

analysing optics. These measured intensities form the matrix D, where each column

corresponds to the data collected for a single input polarisation state generated by

the PSG. The measurement was done using lock-in detection, as detailed in Section

4.4.

4.2 Optical Design

As discussed in Section 3.2.3, the presence of large aberrations when imaging the

DMD onto the object plane would adversely affect single pixel imaging polarime-

try. Other than a reduction in image quality and resolution, interference effects

between pixels also become more significant. Moreover, the point spread function of

the imaging system is a key parameter that determines the spatial resolution of the

single pixel polarimetric imaging system, because for any fixed DMD, it sets a limit

on the smallest pixel size of the spatial masks that can be projected onto the sample
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plane. These considerations aside, given the low NA of L7, the lenses also have to

be chosen so as to minimise the angular spread of the beam impinging on the object

plane, thus maximising the light efficiency. In other words, the imaging system has

to be able transmit all spatial frequencies in a displayed spatial pattern to the object

plane while keeping the divergence of the beam low enough to minimise vignetting

by the collection lens L7. Therefore, careful selection of the imaging components by

means of optical design is essential, and is presented in this section.

The components involved in imaging the DMD onto the object plane can be grouped

into two parts - the illumination optics, which consists of all the components from

the laser up to the DMD, and the imaging optics, which is composed of lenses L5

and L6. The plane mirrors used in this setup are assumed to be ideal and free from

aberrations. In reality, if the mirrors are not perfectly flat, it is possible that some

astigmatism may be present [184], which may be a problem for more demanding

imaging applications.

For a few reasons that will be discussed here, it is expected that the illumina-

tion optics contributes weakly to the total aberrations in the system. Firstly, the

pinhole, which is of a similar size to the diffraction-limited focal spot size of L3,

spatially filters the beam. As a result, the zero-frequency component of the field is

isolated, while the higher frequency components are mostly rejected. Since, ideally,

the laser beam entering L3 is collimated and on axis, the removal of the higher fre-

quency components aids in minimising aberrations in the incident beam. Secondly,

only achromatic doublets were used in both beam expanders. Achromatic doublets

are usually designed to have minimum coma, spherical and chromatic aberrations.

Combined with the consideration that the laser beam is aligned on axis, the aber-

rations caused by the lenses are not expected to be large. For these reasons, the

optical design of the system has mainly focused on the imaging optics, lenses L5

and L6.

The design of the system was done using the simulation software Zemax OpticStudio

16.5, and was conducted in the following manner. First, two achromatic doublets
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were selected based on a design magnification of −0.5. This magnification was cho-

sen so that the spatial masks projected by the DMD (full height of 6.614mm) would

fully cover the letter R in the heterogeneous test object (full height of 2mm). The

selected magnification only controls the ratio between the focal lengths of lenses L5

and L6. The absolute focal lengths were picked by testing different configurations,

and choosing an option which provided a balance between the system footprint and

image aberrations. The focal lengths chosen were f = 100mm and f = 50mm for L5

and L6 respectively, as described in Table 4.1. The two lenses were initially placed

in an afocal setup, where both the object and image distances are at infinity, to

resemble the illumination path, and the distance between them was optimised for

minimum root-mean-squared error in the resulting wavefront. Once optimised, the

separation of the two lenses was fixed, and the setup was switched to finite image

and object distances. The object height was set to 3mm, corresponding to approxi-

mately half of the height of the DMD, since the DMD is centred on the optical axis.

Finally, the object and image distances were optimised for the smallest spot size at

the image plane.

The final design layout for L5 and L6 is shown in Figure 4.4. The paraxial mag-

nification of the system was reported by the software to be −0.5. The red, green

and blue rays in Figure 4.4 originate from object points at heights of 3mm, 2mm

and on axis respectively. The predicted spot sizes at said object heights are shown

in Figure 4.5, and show that the system is expected to be diffraction limited with

an Airy radius of 7.35µm. The Seidel coefficients [185] are shown in Figure 4.6. It

can be seen that the largest aberration in the system is spherical abberation, with

a corresponding Seidel coefficient of 0.086 waves.
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Figure 4.4: Layout for optical system for imaging DMD onto the object plane.

Figure 4.5: Spot diagram for optical system for imaging DMD onto the object plane,
showing the image plane spot sizes for the three object distances tested.
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Figure 4.6: Seidel coefficients at each surface in the system.

The system was set up in the laboratory according to the design distances, as shown

in Figure 4.4. As the height of the letter R in the heterogeneous object was measured

with a ruler to be (2 ± 0.5)mm, the image magnification was estimated using the

height of the letter in a reconstructed intensity image obtained using the system

(see Section 4.4 and 4.5 for details of image reconstruction). The resulting image

had a pixel resolution of 16 × 16, and is shown in Figure 4.7. The letter R was

found to be 10 pixels in height, so the size of each pixel was computed to be 2±0.5
10±0.5

=

(0.2 ± 0.05)mm. The height of the illuminated patch at the object plane was thus

concluded to be 2±0.5
10±0.5

× 16 = (3.2 ± 0.8)mm. Since the spatial mask covered the

full height of the DMD, the imaging system was found to have a magnification of

3.2±0.8
6.614

= 0.5±0.1. Seeing that the magnification is close to the design magnification,

it was inferred that the separation of the lenses in the actual arrangement was

similar to the design distances. Consequently, the spatial resolution predicted by

the simulations is expected to be representative of the physical setup.
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Figure 4.7: Intensity image of letter R obtained using the system. The x and y axes
correspond to pixel indices.

The last lens in the system, L7, images the object plane onto each photodiode in the

PSA, with the collected light passing through beamsplitters and polarising elements

on the way. Since the photodiode has a single pixel and only measures an integrated

intensity, the aberrations caused by L7 and the optical elements in the PSA are

inconsequential, so long as all the light is still collected by the detector. Moreover,

due to the low NA of L7, the collected light propagates through the optics at low

angles, so instrumental polarisation can be assumed to be negligible. Nevertheless,

the changes in polarisation due to the various optical elements in the setup are

intrinsically accounted for in the calibration of the polarimeter, which is discussed

in the next section of this chapter.

4.3 Polarimetric Calibration

Polarimeter calibration is required before the system is used, in order to obtain the

true instrument matrices of the PSG and PSA. Once the instrument matrices, A

and W are known, the Mueller matrix of any test object can be computed using

Equation 4.32 (see Section 2.2 or 4.5). Since the determination of the Mueller matrix

of the object depends on these two matrices, it is important that the calibration is

done accurately.

Many techniques for polarimeter calibration have been reported in literature [186,

187, 188, 189]). Though usually adapted to the specific setup, the procedure gener-
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ally consists of measuring the detector intensities corresponding to different orienta-

tions of optical elements that have known polarimetric responses. A theoretical form

for the expected detector intensities can then be derived, and this, combined with

the measurements, allows the instrument matrices to be computed. For instance, for

the calibration of the four-detector photopolarimeter by Azzam [187, 190], a Glan-

Thompson polariser was rotated around the beam axis. From theory, the related

detector measurements were shown to follow a simple Fourier series, with the Fourier

components corresponding to the first three columns of the PSA instrument matrix.

Thus, these columns could be obtained by a least square fit to the theoretically de-

rived function. The fourth column of the instrument matrix was obtained similarly

by rotating a Glan-Thompson polariser and a quarter waveplate in two orientations,

such that right and left circularly polarised light was directed into the PSA. It was

then demonstrated that by taking the difference of the two measurements, the fi-

nal column of the instrument matrix could be obtained. Though well-established,

these techniques are sensitive to errors in the measurement, and require meticulous

alignment of the optical components with high precision. Moreover, the optical

components themselves are often imperfect, and further measurements are required

in order to reduce the resulting uncertainties. Making use of the same example

as before of the four-detector photopolarimeter, the production of perfectly circular

polarisation states used for calibration is a highly challenging task. As quarter wave-

plates tend to be flawed, it is more likely that elliptical near-circular polarisation

states are produced instead, thus leading to errors in the resulting instrument ma-

trix. To overcome this, other than the original measurement taken for each circularly

polarised state, the authors took an additional measurement by jointly rotating the

Glan-Thompson polariser and the quarter waveplate by 90◦. Assuming that imper-

fections in the quarter waveplate are small, the sum of the two measurements was

shown to approximate a perfect circularly polarised state. Thus, as this example

illustrates, having to account for the imperfections of the optical components fur-

ther complicates the calibration process. These drawbacks aside, these calibration

procedures also exclude the contribution of other optical elements in the system,

such as lenses and mirrors, which also modify the polarisation state of light.
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The eigenvalue calibration method (ECM) offers a means of overcoming these limita-

tions. Instead of making assumptions about W, both matrices A and W are derived

from measurements over multiple calibration samples, with the Mueller matrix for

each sample, Mi, also recovered in the process. As a result, system imperfections

are included within the calibrated matrices. In view of these advantages, ECM

was adopted as the means of calibration for this work. A full description of the

method can be found in [191, 192]. Here, a brief summary of the method and its

implementation is discussed.

4.3.1 Eigenvalue Calibration Method

The assumptions made in the ECM are that

1. there is negligible noise in the system,

2. the calibration samples used are non-depolarising,

3. the calibration samples have known Mueller matrices.

To conduct ECM, measurements over K calibration samples are first taken. As

discussed in Chapter 2.2, the corresponding detector intensities for the ith calibration

sample are described by

Di = AMiW , (4.4)

for i = {1, 2, ..., K}. A measurement with no calibration sample present is also

taken, with the resulting detector intensities given by

Dair = AW . (4.5)

Here, the Mueller matrix for air is taken to be the identity matrix. Multiplying the

measurements for each calibration sample with D−1
air gives the set of matrices

Ci = D−1
airDi = W−1MiW . (4.6)

The matrices Ci and Mi can be seen to be similar matrices, which consequently have

shared eigenvalues [148]. This property enables the reconstruction of Mi, which is
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done as follows.

In the absence of depolarisation, a general Mueller matrix can be written in the

form [127]

Mi = τiR(−θi)


1 − cos 2Ψi 0 0

− cos 2Ψi 1 0 0

0 0 sin 2Ψi cos ∆i sin 2Ψi sin ∆i

0 0 − sin 2Ψi sin ∆i sin 2Ψi cos ∆i

R(θi) ,

(4.7)

where τi is equal to half of the maximum transmission, ∆i is the retardance of

the sample and tan Ψi describes the ratio between the maximum and minimum

amplitude transmission of the sample. Also, R(θi) is the rotation matrix describing

a counter-clockwise rotation about the optical axis by θi, defined with respect to an

observer facing towards the source, given by

R(θi) =


1 0 0 0

0 cos 2θi sin 2θi 0

0 − sin 2θi cos 2θi 0

0 0 0 1

 . (4.8)

From Equation 4.7, the four eigenvalues of Mi can be computed as

µ1 = 2τi sin
2 Ψi

µ2 = 2τi cos2 Ψi

µ3 = τi sin 2Ψi exp(i∆i)

µ4 = τi sin 2Ψi exp(−i∆i) .

(4.9)

Therefore, for each calibration sample, the eigenvalues of Ci can be used to obtain

τ , Ψi and ∆i through Equation 4.9. This means that the Mueller matrix for each

calibration sample can be reconstructed using Equation 4.7, up to an unknown ro-

tation as described by R(θi).

In order to obtain the matrix W, Equation 4.6 is used. Multiplying both sides
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of the equation by W, one obtains

MiW −WCi = 0 . (4.10)

From Equation 4.10, the matrix W lies in the nullspace of the operator HM , which

is defined as

HMi
: X→MiX−X(AW)−1(AMiW) (4.11)

where Ci has been substituted using Equations 4.5 and 4.6. Hence, if the dimension

of the nullspace of HMi
is 1, the unique matrix in the nullspace must be the desired

matrix W. Unfortunately, as the following discussion will show, this is not the case

when only a single calibration sample (i.e. K = 1) is used. The key idea is then to

use multiple calibration samples, such that the intersection of their nullspaces has a

dimension of 1, corresponding to the instrument matrix W.

Substituting X
′

= XW−1, and multiplying by W−1, a second operator can be

defined from Equation 4.11 as

H′Mi
: X →MiX

′ −X
′
Mi . (4.12)

Since W is, by definition, invertible and not a zero matrix, HMi
and H′Mi

share the

same nullspace. With this in mind, a few observations can be made from Equation

4.12. Firstly, the nullspace of the operator H′Mi
, and consequently HMi

, is fully de-

termined by the Mueller matrices of the calibration samples, and is independent of

the instrument matrices A and W. Thus, the choice of calibration samples is uni-

versal, and does not depend on the experiment setup. Secondly, it can be observed

that H′Mi
is also the commutator of Mi, in the sense that matrices in the nullspace of

H′Mi
are all possible matrices that commute with Mi. Accordingly, the nullspace of

H′Mi
and the commutator of Mi are of equal dimension. From matrix theory, it can

be derived that a square matrix, A, of dimension n×n, is commutable with at least

n matrices [191]. Hence, given that Mueller matrices have a size of 4× 4, the use of

a single calibration sample will mean that there are at least 4 solutions to Equations

4.11 and 4.12. At least two calibration samples are required in order to ensure that
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there is a unique solution for W. In this work, as proposed by De Martino et al.

[131], linear polarisers at 0◦ and 90◦, along with a quarter waveplate at 30◦ were used.

With a set of appropriate calibration samples, the equation

MW −W(AW)−1(AMW) = 0 , M ∈ {M1,M2, ...MK} (4.13)

forms an overdetermined linear system, whose unique solution for W can be found

as follows. Equation 4.10 is first vectorised as

(
I⊗Mi −C>i ⊗ I

)
vec(W) = ~0

Hivec(W) = ~0 ,
(4.14)

where Hi =
(
I⊗Mi −C>i ⊗ I

)
and vec(...) denotes the vectorisation operation.

Multiplying both sides of Equation 4.14 by H>i , Equation 4.14 can be combined for

the K calibration samples as

Lvec(W) = ~0, where L =
K∑
i=1

H>i Hi . (4.15)

As L is a real symmetric matrix, it can be diagonalised, with the diagonal values

being equal to its eigenvalues. vec(W) is then the eigenvector corresponding to the

single null eigenvalue of L, which has been made to be unique through the choice of

calibration samples. In this way, the instrument matrix, W is obtained. In practice,

due to noise and experimental precision, the smallest eigenvalue is not exactly zero,

but should still be close to this ideal value.

Equation 4.15 utilises the Mueller matrices of the calibration samples, whose ro-

tation angle, θi, has so far been undetermined. The rotation angles of the calibra-

tion samples relative to each other can be obtained from L by minimising the ratio

between the smallest eigenvalue, λ16, and second smallest eigenvalue, λ15, of L,

ε =

√
λ16

λ15

, (4.16)

136



4.3 Polarimetric Calibration

The absolute rotation angle for each calibration sample can be obtained by setting

a reference axis to the optical system, such as an axis of a calibration sample, or

an axis corresponding to a fixed polariser placed directly after the source. With

the rotation angle of each calibration sample determined, Mi, and hence L, can be

computed. This, in turn, allows W to be obtained as the eigenvector corresponding

to the null eigenvalue of L. Finally, A can be obtained from Equation 4.5 as

A = DairW
−1 (4.17)

This completes the calibration process, and the matrices A, W and Mi are known. It

is worth noting that the method is sensitive to noise, as can be seen from Equations

4.5 and 4.6. In the presence of noise, Dair in Equation 4.5 has an added noise

term that is amplified by the matrix inversion in Equation 4.6. This is propagated

through the calibration process into errors in the obtained matrices.

4.3.2 Calibration Results

Here, the calibration results used to obtain the images in Chapter 6 are discussed.

The ECM calibration procedure discussed in Section 4.3.1 was used. As mentioned

previously, a quarter wave plate at 30◦ (Thorlabs WPQ10M-546 ) and a linear po-

lariser (Thorlabs LPVISE100-A) at 0◦ and 90◦ were used as calibration samples.

Lock in-detection (see Section 4.4.2) was used to increase the measurement SNR.

In addition, to prevent saturation of the photodiodes, neutral density (ND) filters

(Thorlabs NE10A and NE20A) were used to attenuate the incident illumination.

The two linear polariser samples are each crossed with at least one output anal-

yser in the PSA. ECM is sensitive to experimental noise, and with poor SNR, as is

the case for these linear polarisers, the eigenvalues of Ci could be complex. If the

eigenvalues of Ci were found to be complex for the two linear polariser samples, the

ideal polarimetric parameters, {Ψ,∆} = {π
2
, 0}, were used instead in Equation 4.7

to generate their Mueller matrices. τ remains unchanged, and is computed from the

trace of Ci.
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Due to experimental uncertainties, the exact orientation angles of the calibration

samples may differ slightly in practice, but ECM estimates the actual angles used

as part of the calibration process, as discussed in Section 4.3.1. A comparison of the

recovered angles and the polarimetric parameters, Ψ, ∆ and τ , with their expected

values therefore serves as a first verification of the calibration.

Using the above mentioned calibration samples, the polarimetric parameters and

orientation angles estimated by ECM were

Calibration Sample Ψ/radians ∆/radians τ θ/◦

Linear polariser (0◦) 1.57 0.00 0.40 −2.00

Linear polariser (90◦) 1.57 0.00 0.39 90.00

Quarter waveplate (30◦) 0.78 1.19 0.99 25.93

Table 4.3: Polarimetric parameters and orientation angles of the calibration samples
obtained by ECM. The reference axis is defined to be that of the linear polariser at 90◦.

The final column of Table 4.3 shows that the retrieved orientation angles for the

three calibration samples are close to the design angles. With regards to the esti-

mated polarimetric parameters, a check of the manufacturer’s datasheet [193] shows

that the linear polariser has a maximum transmission of 79.25%, which implies that

ideally, τ = 0.395. It can be seen that this is close to the values obtained through

ECM for both linear polariser samples. The polarimetric parameters for an ideal

quarter waveplate are {Ψ,∆, τ} = {π
4
, π

2
, 1}. It can be seen that other than ∆, the

obtained values are close to the ideal parameters. The lower value of ∆ is to be ex-

pected as the quarter waveplate used is not designed for the laser wavelength used

in this work. The manufacturer datasheet for the waveplate [194] reports a typical

retardance of 0.2151 waves at the laser wavelength of 638nm, which corresponds to

∆ = 1.35. This is closer to the obtained result by ECM, although a small discrep-

ancy of 0.03 waves remains. The manufacturer quotes a retardance accuracy of 0.01

waves, so part of this discrepancy could stem from differences in the fabrication of

each waveplate. The slight deviation could also be caused by some spatial inhomo-

geneity of the waveplate. Thus, the estimated values in Table 4.3 are seen to agree

with expectation.
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The calibration matrices obtained from ECM were

WECM =


0.37 0.35 0.35 0.32

0.37 0.03 −0.01 −0.14

0.03 0.11 0.20 −0.27

−0.04 0.34 −0.30 0.14

 , (4.18)

AECM =


6.33 6.32 0.67 −0.32

14.20 −14.19 −2.88 −0.09

12.45 −1.76 −4.96 −11.33

11.28 0.07 11.01 0.49

 . (4.19)

The matrices WECM and AECM have condition numbers of 2.57 and 5.52 respec-

tively. These are slightly larger than the condition numbers expected from theory,

which is to be expected due to non-ideal experimental conditions.

As mentioned previously, each column in W is a Stokes vector corresponding to

an input polarisation state. As such, the first row of W describes differences be-

tween the intensity of the four input polarisation states. Theoretically, the four

input polarisations should have the same intensity. However, it can be seen from

WECM that there is a slight variation across the four input states. On the other

hand, each row in A is a Stokes vector relating to an output analyser state, which

implies that the first column of A shows differences between the transmittance of

the four output analyser arms of the PSA. In theory, the four arms should have equal

transmittance, but it can be seen from AECM that in reality, there is a variation in

transmittance across the four arms. Both of these variations are likely due to non-

ideal polarisation elements, such as the variable waveplates and the non-polarising

beamsplitters which were employed.

WECM and AECM can be better compared to the matrices expected from theory

by first normalising them such that each polarisation state has equal intensity or

transmittance. In other words, WECM is normalised by its first row, while AECM is

normalised by its first column. The resulting matrices are shown in Equations 4.21
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and 4.20 below.

Wnorm
ECM =


1.00 1.00 1.00 1.00

0.98 0.08 −0.02 −0.43

0.07 0.31 0.59 −0.85

−0.12 0.95 −0.86 0.44

 (4.20)

Anorm
ECM =


1.00 1.00 0.11 −0.05

1.00 −1.00 −0.20 −0.01

1.00 −0.14 −0.40 −0.91

1.00 0.01 0.98 0.04

 (4.21)

Comparing Equation 4.20 to Equation 4.2, it can be seen that the values in Wnorm
ECM

are significantly different from the theoretical prediction. Possible causes for the

difference are inaccuracies in the orientation of the fast axes of the VWP and the

applied phase differences, as well as the additional components in the optical path,

such as mirrors and lenses, that are unaccounted for in the theoretical matrix. Com-

paring Equation 4.21 to Equation 4.3, it can be seen that there are also some dif-

ferences between the theoretically and experimentally obtained matrix, particularly

in the last two rows. One possible reason for the deviation could be imperfect non-

polarising beamsplitters, which could have small differences between the Fresnel

coefficients of the s and p polarisations. In addition, secondary reflections could ex-

plain the larger deviation in the third and fourth rows of Anorm
ECM , which correspond

to the analyser arms measuring linearly polarised light at 45◦ and left circularly

polarised light respectively. As the two analysed polarisation states are not orthog-

onal, secondary reflections from one arm could still arrive at the detector of the

other arm, and thus contribute to the calibrated matrix. In contrast, the first two

rows, which correspond to the analyser arms measuring x and y linearly polarised

light respectively, show a smaller deviation from theory. As the two analyser arms

are measuring crossed polarisation states, secondary reflections from one arm would

not be detected at the output of the other arm. In all, although there were discrep-

ancies between the instrument matrices obtained and their theoretical counterparts,

the deviations observed were deemed to be reasonable.
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The obtained matrices, A and W, were further verified by measuring the Mueller

matrices of a Glan-Thompson prism and a quarter waveplate (Thorlabs WPQ10M-

561 ) at different orientation angles. Specifically, the orientation angles used ranged

from 0◦ to 180◦, in step sizes of 10◦. As a first check, the experimentally obtained

Mueller matrices, Mexp, of these two test samples, were multiplied with a known

input Stokes vector, and the output intensities were qualitatively compared to the

results obtained using the theoretical Mueller matrices, Mtheory, at each orientation

angle. The quantitative difference between the two Mueller matrices, Mexp and

Mtheory, was also computed, by first normalising each matrix by their respective

(1, 1) matrix elements. The difference between the normalised matrices for each

orientation angle was then calculated using two measures - the Frobenius norm and

an element-wise root-mean-square error (RMSE). The Frobenius norm is defined as

‖∆M(θn)‖F =

√∑
i,j

|∆Mij(θn)|2 , (4.22)

where ∆M = Mexp,n−Mtheory,n, with Mexp,n and Mtheory,n denoting the normalised

experimental and theoretical Mueller matrices respectively. ∆Mij is the (i, j)th

element of the ∆M, θn is the nth orientation angle and the summation is taken over

all elements of ∆M. The Frobenius norm provides a quantitative measure of the

difference across the entire Mueller matrix and can be interpreted as an estimate

of the total error across all matrix elements for a single orientation angle. The

average error across Mueller matrix elements for each orientation angle is related

to the Frobenius norm by a multiplicative factor of 1
4
. On the other hand, the

element-wise RMSE is computed as

RMSEij =

√√√√ 1

N

N∑
n=1

|∆Mij(θn)|2 . (4.23)

Here, N is the total number of orientation angles used. The element-wise RMSE

calculates the error for each Mueller matrix element across all tested orientation

angles, and provides further insight, highlighting any matrix elements which poten-

tially demonstrate larger error.
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For the Glan-Thompson prism, a Stokes vector corresponding to an input beam

that is linearly polarised in the x direction was used. Theoretically, the output

intensity should be governed by Malus’s law,

I(θ) = Io cos(θ) , (4.24)

where θ is the orientation angle of the prism and Io is the maximum intensity across

all orientation angles. This behaviour was observed in both the theoretical and

experimental results, which are compared in the left figure of Figure 4.8. Both

experimental and theoretical results have been normalised by their respective Io.

Figure 4.8: Verification of calibration using a Glan-Thompson prism
Comparison of intensity simulated using the experimental and theoretical Mueller

matrices before (left) and after (right) fitting and correcting for offset.

From Figure 4.8, it can also be seen that the experimental result shows a systematic

offset of about 10◦, which can be attributed to an offset in the starting orientation of

the Glan-Thompson. This offset has to be accounted for in the theoretical Mueller

matrices before any quantitative comparison can be made. In order to obtain a

better estimation of the offset, the experimental data was fit with the function

I(θ) = a cos2(θ − b) + c , (4.25)

where a, b and c are constants determined by the fit. The determined constants

were a = 0.98, b = −6.73◦ and c = −6.01 × 10−6 with a R-squared value of 0.996,

and a plot showing the fit is shown on the right of Figure 4.8. As expected, a

is close to 1 and c is small, and b shows an offset of 6.73◦, which was used to
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adjust the theoretical Mueller matrices. The Frobenius norm and the element-wise

RMSE of the difference between the theoretical and experimental matrices were

also computed, and are shown in Figure 4.9 and Table 4.4 respectively. The largest

Frobenius norm observed was 0.27, and the largest element-wise RMSE of 0.064 was

observed for matrix elements (3, 1) and (4, 1).

Figure 4.9: Frobenius norm of the difference between the theoretical and experimental
Mueller matrices for the Glan-Thompson prism as a function of the transmission axis.

0 0.042 0.059 0.030

0.050 0.049 0.060 0.020

0.063 0.057 0.049 0.025

0.064 0.038 0.051 0.008

Table 4.4: Element-wise RMSE of the difference between the theoretical and
experimental Mueller matrices for the Glan-Thompson prism.

For the quarter wave plate, a Stokes vector corresponding to an input beam that

is linearly polarised in the x direction was also used. To detect changes in the

output polarisation state, the ideal Mueller matrix of a linear polariser with its

transmission axis oriented parallel to the x-direction was also multiplied by the

experimental Mueller matrices. The output intensities are then the first element of

the output Stokes vector that was computed as

~Sout(θ) = MLPMQWP,exp(θn)~Sin (4.26)

143



Chapter 4: Experimental Methods

Here, ~Sin and ~Sout are the input and output Stokes vectors respectively, MLP is the

Mueller matrix of the ideal linear polariser and MQWP,exp(θn) is the Mueller matrix

of the quarter waveplate measured at the orientation angle θn. Theoretically, the

intensity variation as a function of orientation angle is given by

I(θ) =
Io
2

(
1 + cos2 2θ

)
. (4.27)

The plot on the left of Figure 4.10 shows the comparison between the intensities

calculated from the experimental and theoretical Mueller matrices, once again nor-

malised by Io. Both intensities exhibit the behaviour predicted by Equation 4.27,

although a systematic offset can be seen in the experimental results. As was the

case for the Glan-Thompson prism, this systematic offset can be attributed to an

experimental uncertainty in the starting orientation of the test quarter waveplate.

Figure 4.10: Verification of calibration using a quarter waveplate
Comparison of intensity simulated using the experimental and theoretical Mueller

matrices before (left) and after (right) fitting and correcting for offset.

As before, a fit was conducted in order to determine the offset, but this time the fit

was done with the function

I = a cos2(2(θ − b)) + c , (4.28)

where a, b and c are constants determined by the fit. The determined constants

were a = 0.38, b = −7.362◦ and c = 0.5986 with a R-squared value of 0.98, and a

plot showing the fit is shown on the right of Figure 4.10. The offset of 7.362◦ was

used to correct the theoretical matrices, and the difference between the theoretical
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and experimental matrices were computed. The Frobenius norm of the difference

and the element-wise RMSE are shown in Figure 4.11 and Table 4.5 respectively.

The largest Frobenius norm was 0.11 and the largest RMSE of 0.038 was observed

for the matrix element (2, 3).

Figure 4.11: Frobenius norm of the difference between the theoretical and
experimental Mueller matrices for the quarter waveplate.

0 0.022 0.021 0.024

0.013 0.020 0.036 0.025

0.010 0.033 0.017 0.026

0.028 0.023 0.020 0.023

Table 4.5: Element-wise RMSE of the difference between the theoretical and
experimental Mueller matrices for the quarter waveplate.

From these measurements, the calibration matrices obtained from ECM are seen to

provide reasonable results, and have thus been verified. Furthermore, there are no

matrix elements that consistently demonstrate a larger error. ECM is not a perfect

technique - though it accounts for all elements in the optical path, noise can still lead

to errors in the calibration. Inaccuracies in the calibration matrices would in turn

result in a systematic error in the computed Mueller matrices. Yet, the observed

differences between the experimental and theoretical Mueller matrices could also

originate from other sources other than calibration errors. For example, non-ideal

test samples would also lead to a systematic error while experimental noise would

cause random errors in the computed Mueller matrix. It is challenging to separate
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the contributions from various systematic errors, but it is possible to estimate the

amount of random fluctuations in the Mueller matrix based on the fluctuations in

the detector signal. The propagation of experimental noise to the Mueller matrix is

discussed further in Section 5.

For conciseness, in the rest of this thesis, the matrices obtained from ECM will

simply be denoted as A and W.

4.4 Data Acquisition

4.4.1 Acquisition Procedure

Using the setup described in Section 4.1, spatial masks for single pixel imaging were

sequentially projected onto the sample plane using the DMD for each input polar-

isation state. The four detectors in the PSA then acquired the data, which was

recorded by a data acquisition system (National Instruments, DAQ 6341 ) with a

sampling rate of 100Hz and an acquisition time of 30ms. The resulting dataset,

consisting of 30 datapoints, was averaged to form the intensity recorded in one mea-

surement sample. The sampling rate and acquisition time were determined based

on the parameters used for lock-in detection, which was employed to increase the

SNR of the measurements and will be detailed further in Section 4.4.2. Before each

image acquisition, a dark measurement was also taken for all four detectors with

the same acquisition parameters, and these recorded values were subtracted from

subsequent measurements taken by each detector.

A close examination of multiple measurements acquired over an unchanging inci-

dent illumination showed the presence of spikes, which seemed to occur randomly

across any one of the four detectors. An example is shown in Figure 4.12, which

shows 1000 measurement samples taken by detector D3 under constant illumination,

without any polarimetric elements in front of the detector. The dataset correspond-

ing to the spike (dataset number 712 in the left plot of Figure 4.12) is shown on

the right of Figure 4.12, compared to a different dataset which did not exhibit a
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spike (specifically the dataset corresponding to sample 500 in the left plot of Figure

4.12).
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Figure 4.12: (left) Measurement samples, where each sample was an average over 30
datapoints, taken by detector D3 under constant illumination showing a spike in the

data, (right) the datapoints making up the sample corresponding to the observed spike
compared to a sample that did not exhibit a spike.

It can be seen that the datapoints making up the spiked measurement sample were

highly anomalous. The source of this anomaly was not clear, but since no polarimet-

ric elements were present in the measurements shown in Figure 4.12 and spikes have

been observed to occur randomly in all four of the detectors, it was hypothesised

that the spikes were due to instability of the laser source. In order to reject anoma-

lous data, the standard deviation for each measurement sample was computed. The

resulting standard deviation corresponding to the measurements in Figure 4.12 is

shown below in Figure 4.13, and it is obvious that the anomalous dataset has a large

standard deviation, as can be expected given the fluctuations observed in the right

plot of Figure 4.12. Checking the values of the standard deviation in other instances

where spikes have occurred, a threshold on the standard deviation was empirically

set to be 0.03. Thus, measurement samples that had a standard deviation larger

than 0.03 were rejected and the measurement was repeated.
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Figure 4.13: Standard deviation for each measurement sample in Figure 4.12.

As discussed in Section 2.4 (see Equation 2.61), for the jth input polarisation state

and the ith analysed polarisation state, the related output intensity corresponding

to each spatial mask can be concatenated into a vector, ~yij, which can be related to

the object transmission, ~xij, as

~yij = Φ~xij , (4.29)

where the rows in Φ correspond to the projected basis vectors. As discussed in Sec-

tion 2.4, any complete set of basis vectors (i.e. Φ is invertible) can be used for single

pixel imaging. In this work, a spatial basis formed by the rows of a 256×256 scram-

bled Hadamard matrix was used [195]. Such a matrix is obtained by a randomisation

of the rows and columns of the conventional (i.e. not scrambled) Hadamard matrix,

which consists of −1 and +1 elements. In the context of compressive sensing, it was

proposed that the additional randomisation step applied to the Hadamard matrix

would result in a matrix that is universally incoherent with any chosen sparsifying

basis [195], thereby minimising the number of measurements required for an ex-

act reconstruction. Though compressive sensing was not utilised in this work, the

scrambled Hadamard matrix was chosen as the spatial basis in view of potentially

incorporating this method in the future. Each row of the scrambled Hadamard basis

was reshaped into a square, resulting in a spatial mask consisting of 16× 16 pixels.

The full set of 256 masks was used.
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Figure 4.14: An example of a positive Hadamard mask used in the experiment.

In order to project the spatial masks, the DMD was set to mirror the computer

screen, and a MATLAB code utilising the PsychToolBox extension [196, 197, 198]

was written to project the spatial masks onto the screen. As the DMD is only able to

provide binary modulation, in practice, it is necessary to project two spatial masks

per basis vector - a positive mask displaying the +1 elements, and a negative mask

consisting of the −1 elements. An example of a positive spatial mask used in the

experiment is shown in Figure 4.14. The difference between the two corresponding

detector intensities is then a measurement of the true projection of the object inten-

sity transmission and the Hadamard basis mask. Figure 4.15 illustrates this process

using a basis vector from a 4× 4 Hadamard matrix, that has been reshaped to be a

2 × 2 matrix. As such, for each of the four input and analysed polarisation states,

2× 256 = 512 measurements were taken.

Figure 4.15: Illustration showing how two non-zero spatial masks can be used to
obtain the projection between the object transmission and the Hadamard basis mask.
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4.4.2 Lock-in Detection

Lock-in detection [199] was employed to improve the SNR of the measurements.

Before implementing lock-in detection, it is useful to first study the power spectrum

of the noise in the data as this would enable the identification of suitable modu-

lation frequencies. Asquare illumination area covering the full height of the DMD

was projected onto the empty sample plane and the resulting signal was measured

1000 times by the PSA over an acquisition time of 1s, with a sampling frequency of

20kHz. The same measurement was taken without any illumination on the DMD.

A Fourier transform of both datasets was then performed, and the power spectrum

was computed as the square of the Fourier amplitudes averaged over the 1000 ac-

quisitions. The resulting power spectra are shown in Figures 4.16 and 4.18, with the

zero-order frequency set to zero for readability. It can be seen that in both cases,

the noise is mainly concentrated within ±1kHz. In view of these observations, the

modulation frequency for lock-in detection was set to 5kHz.

Figure 4.16: The power spectrum of the noise obtained when the detectors were
illuminated. For readability, the zero-order frequency has been set to zero.
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Figure 4.17: Same as Figure 4.16, but zoomed in on the central region of the plot.

Figure 4.18: Log of the noise spectrum obtained without any illumination on the
detectors. For readability, the zero-order frequency has been set to zero.
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Figure 4.19: Same as Figure 4.18, but zoomed in on the central region of the plot.

Lock-in detection was then implemented as follows. The laser intensity was first

modulated using a frequency generator (TTi, TG330 ), at a frequency of 5kHz. For

each input polarisation state, the four detector outputs were sequentially forwarded

to a lock-in amplifier (Stanford Research Systems, Model SR530 ), through the use of

an analog multiplexer (Texas Instruments, MPC509 ). The lock-in amplifier was set

to a time constant of τ = 30ms and a sensitivity of 5mV. With these settings, the

output signal was filtered and amplified within a range of fcutoff = 1
2πτ
≈ 5Hz around

the modulation frequency. These settings were selected such that with a scattering

medium (specifically the scattering phantom SM4, see Section 4.6) present in the

sample plane illuminated by one of the Hadamard masks used for single pixel imag-

ing, the maximum signal from the four detectors is close to the limit of the dynamic

range of 10V without saturating the detectors. The resulting signal output from

the lock-in amplifier was then recorded using a data acquisition system (National

Instruments, DAQ 6341 ) at a sampling rate of 100Hz. Finally, 30 samples were

acquired and averaged to provide the measured data for each detector.

The advantage of using lock-in detection can be clearly seen by a comparison of
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the SNR of a typical measurement before and after its implementation. 1000 mea-

surements were taken with a scattering medium present, with and without lock-in

detection. For this experiment, all pixels on the DMD were set to be on, and the

first input polarisation, with a Stokes vector corresponding to the first column of W

(see Equation 4.18), was used. In addition, since the four detectors were identical,

only detector 4 was studied. For a fair comparison, the same sampling rate of 100Hz

and acquisition time of 30ms were used for both measurements. Figure 4.20 shows

the results. A low frequency modulation seems to be present in the dataset taken

with lock-in detection, and this is thought to be caused by temporal instability in

the frequency generator. This was not investigated further because qualitatively,

the signal with lock-in detection still showed smaller fluctuations with respect to

the mean signal. This can be quantified in terms of the SNR, computed as the

ratio of the mean to the standard deviation of the acquired data. When lock-in

detection was used, the mean and standard deviation were found to be 5.6235 and

0.0083 respectively, resulting in a SNR of 682. Conversely, when lock-in detection

was not used, the mean and standard deviation were found to be 0.0143 and 0.0001

respectively, such that the SNR was 105. Thus, it can be seen that lock-in detection

has provided close to seven-fold improvement to the measured SNR.

Figure 4.20: Acquired data using detector 4 with SM4 present
(left) With lock-in detection (right) Without lock-in detection.

The improvement in SNR has a significant effect on the intensity images recon-

structed by single pixel imaging, and as a consequence, the resulting polarimet-

ric images. As an example, intensity images of the test object hidden behind the

scattering medium were taken using single pixel imaging, with and without using
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lock-in detection. The results are presented in Figure 4.21, where the letter R is

clearly seen the image taken with lock-in detection. In stark contrast, the image

taken without lock-in detection is heavily corrupted by noise and the letter R can

no longer be seen. Further matrix inversions required to retrieve the polarimetric

images can only exacerbate the problem. Thus, it can be seen that lock-in detec-

tion significantly increases the SNR, which is important considering the low light

levels involved in measurements of scattering media. As such, lock-in detection was

employed in this work.

Figure 4.21: Single pixel images of the test object taken
(left) with lock-in detection (right) without lock-in detection.

4.5 Data Processing

4.5.1 Obtaining the Spatially Resolved Mueller Matrix

For each input and output polarisation state, the detected intensities correspond-

ing to the project spatial masks were used to reconstruct an image of the object.

This was done using Equation 2.62, which for the ith analysed and the jth input

polarisation state can be written as

~xij = Φ−1~yij , (4.30)

which follows from Equation 4.29. The set of reconstructed intensity images, ~xij, for

all input and analysed polarisation states then provides the detector matrix D for
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each pixel. As discussed in Section 4.1, the four parts of the system can be described

in terms of their corresponding matrices, D, A, M and W. These four matrices are

related via a matrix product, which can be written for the nth pixel as

Dn = AMnW , (4.31)

when no scattering medium is present. Since four input and analysed polarisation

states were used, each of these matrices has a size of 4×4. The instrument matrices,

A and W, which have been obtained using ECM (see Section 4.3), can then be used

to compute M via a matrix inversion on a pixel-by-pixel basis as

Mn = A−1DnW
−1 . (4.32)

When a scattering medium is present, Equation 4.32 is altered to adjust for the

contribution of the scattering medium in the manner described in Section 3.1.3, and

can be written as

Mn = MSM,−1A−1DnW
−1 , (4.33)

where, as in Section 3.1.3, MSM,−1 denotes the Mueller matrix of the scattering

medium. It was assumed that the utilised pixel size of 0.2mm was sufficiently large

such that the MSM,−1 did not vary significantly across the image pixels. As such,

unless otherwise stated, the same correction for the contribution of the scattering

medium was applied to all pixels.

As explained in Section 2.2.5, in practice, obtaining Mn via matrix inversions, as

written in Equations 4.32 and 4.33, does not ensure the physicality of the obtained

Mueller matrix, especially in the presence of noise [200]. In this work, a Constrained

Least Squares algorithm is used instead, and this is discussed further in the next sub-

section. Finally, once Mn has been computed for each pixel, the spatially resolved

Mueller matrix is obtained.

155



Chapter 4: Experimental Methods

4.5.2 Constrained Least Squares Algorithm

As discussed, a direct inversion of the instrument matrices (see Equation 4.32) is not

guaranteed to provide a physically acceptable Mueller matrix [200]. In this work, a

constrained least squares algorithm (CLSQR) was used to ensure the physicality of

the Mueller matrices (see Section 2.2.6) computed from experimental data. Here,

the CLSQR algorithm is detailed and tested on simulated data. The results are

compared to those obtained using a direct inversion, as well as an algorithm based

on maximum likelihood estimation (MLE) that was previously proposed by Aiello

et al. [201].

The CLSQR algorithm seeks to find the physical Mueller matrix, M
′
, that min-

imises the function

F(M
′
) =

∥∥∥D−AM
′
W
∥∥∥

2
. (4.34)

In other words, the obtained M
′

is a physical estimate of the ideal Mueller matrix,

M, that minimises the difference between the theoretical and experimental detector

intensities.

M
′

is constrained to be physical by making use of its related H matrix (see Section

2.2.6)), which can be obtained from M
′

as

H =
1

4

3∑
k,l=0

mkl (σk ⊗ σ∗l ) , (4.35)

where mkl denotes the (k, l)th element of M
′
, and σk are the 2 × 2 Pauli matrices

(see Equation 2.31). Writing out the elements of H explicitly, it can be shown that

the elements of H can be expressed in terms of Jones matrix elements as

H =


〈T00T

∗
00〉t 〈T00T

∗
01〉t 〈T00T

∗
10〉t 〈T00T

∗
11〉t

〈T01T
∗
00〉t 〈T01T

∗
01〉t 〈T01T

∗
10〉t 〈T01T

∗
11〉t

〈T10T
∗
00〉t 〈T10T

∗
01〉t 〈T10T

∗
10〉t 〈T10T

∗
11〉t

〈T11T
∗
00〉t 〈T11T

∗
01〉t 〈T11T

∗
10〉t 〈T11T

∗
11〉t

 , (4.36)
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where Tij denotes the (i, j)th component of the Jones matrix. As such, it can be seen

that H is the complex correlation matrix of the underlying Jones matrix elements.

Hence, any H that is related to a physically acceptable Mueller matrix is required

to be a positive semidefinite matrix [137], which allows it to be represented using

the Cholesky decomposition,

H = LL† , (4.37)

where L is a lower triangular matrix containing 16 real parameters of the form [201]

L =


l1 0 0 0

l5 + il6 l2 0 0

l11 + il12 l7 + il8 l3 0

l15 + il16 l13 + il14 l9 + il10 l4

 . (4.38)

Using Equations 4.34, 4.35 and 4.37, an optimal set of parameters {l1, l2, ..., l16} that

minimises the function F can be found through a minimisation algorithm. Here,

the fminsearch function in MATLAB was applied. An optimised H matrix, Hopt,

can then be reconstructed using Equation 4.37, and the final Mueller matrix, that

is now guaranteed to be physical, can be computed element-wise as

mkl = tr{Hopt [σk ⊗ σ∗l ]} . (4.39)

The CLSQR algorithm follows closely to the MLE algorithm proposed by Aiello et

al. [201], except that the optimisation function used in the latter is given by

L(M) =
∑
a,b

fab ln [pab(M)] , (4.40)

where fab and pab(M) = ~a>a M~wb are the experimental and theoretical probabilities

of measuring a non-zero intensity value at the detector, for an analysed polarisation

state, ~a>a , and an input polarisation state, ~wb. In addition, the summation is taken

over all input and analysed polarisation states. In this approach, the Mueller matrix

is the solution that maximises the likelihood function in Equation 4.40. This work

had initially tested the MLE algorithm using simulated data, but it was found

that the retrieved Mueller matrices were incorrect, even when no noise was present.
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Each simulated dataset was generated by using the theoretical Mueller matrix of

either a quarter waveplate or linear polariser, whose Mueller matrices have a known

form. The detector intensities were then obtained using Equation 4.31 and the

theoretical instrument matrices for the setup used in this work, Atheory and Wtheory

(see Equations 4.2 and 4.3). As an example, the results obtained by the MLE

algorithm when using the Mueller matrix for a linear polariser with its transmission

axis at 25◦ is shown here. The groundtruth Mueller matrix is given by

MGT =


1.00 0.64 0.77 0.00

0.64 0.41 0.49 0.00

0.77 0.49 0.59 0.00

0.00 0.00 0.00 0.00

 , (4.41)

but the Mueller matrix retrieved by the MLE algorithm using ideal noiseless data

was

MMLE =


1.00 0.64 0.77 0.00

0.45 0.29 0.35 0.00

0.89 0.57 0.68 0.00

0.00 0.00 0.00 0.00

 . (4.42)

These two matrices can be seen to be very different, with the largest difference

between elements of 0.189. As the groundtruth Mueller matrix was used as the

initial guess for the algorithm, this suggests that the difference cannot be explained

by the algorithm finding a local maximum. Interestingly, a lower value was obtained

for the optimisation function (see Equation 4.40) when the groundtruth Mueller

matrix was used. One possible explanation behind this discrepancy could be that

the instrument matrices used by Aiello et al. are different from those used in this

work. Aiello et al. utilised the same set of six polarisation states for the PSA and

the PSG, namely linearly polarised light at 0◦, 90◦, 45◦ and 135◦, along with left

and right circularly polarised light. The instrument matrices corresponding to these
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polarisation states are

AAiello = W>
Aiello =



1.00 1.00 0.00 0.00

1.00 −1.00 0.00 0.00

1.00 0.00 1.00 0.00

1.00 0.00 −1.00 0.00

1.00 0.00 0.00 −1.00

1.00 0.00 0.00 1.00


. (4.43)

Using ideal noiseless data that was simulated using AAiello and WAiello, the groundtruth

Mueller matrix, MGT , was obtained exactly by the MLE algorithm. A third set of

instrument matrices was also tested, defined as

Atetra = W>
tetra =

√
2

3



√
3
2

1 0 − 1√
2√

3
2
−1 0 − 1√

2√
3
2

0 1 1√
2√

3
2

0 −1 1√
2

 , (4.44)

where the polarisation states used form a regular tetrahedron within the Poincaré

sphere with an edge length of 2
√

2√
3

. With this third set, it was also found that the

Mueller matrix retrieved by the MLE algorithm matched the groundtruth result.

The observations from these tests seem to suggest that the instrument matrices used

in this work introduce a bias in the optimisation function described in Equation 4.40

whereas those used by Aiello et al. represent a mutually unbiased basis [201]. At

the point of writing, the reason behind this phenomenon was still unclear, but it was

surmised that it could be due to an unequal distribution of the polarisation states

sampled by the PSA across the Poincaré sphere. Figure 4.22 shows the distribution

of the polarisation states on the Poincaré sphere for the PSG and the PSA used

in this work. In contrast, the polarisation states used by Aiello et al. and the

polarisation states forming the regular tetrahedron are shown in Figure 4.23.
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Figure 4.22: Distribution of polarisation states on the Poincaré sphere for the (left)
PSG and the (right) PSA used in this work.

Figure 4.23: Distribution of polarisation states on the Poincaré sphere for the
instrument matrices used by (left) Aiello et al. [201] and (right) that formed using

polarisation states forming a regular tetrahedon within the Poincaré sphere.

Comparing the four sets of polarisation states, it can be seen that those correspond-

ing to Atheory are exclusively located in the bottom hemisphere, while the polarisa-

tion states in the other three sets are more equally spaced about the sphere surface.

As such, the set of all possible polarisation states, as represented by the Poincaré

sphere, is not equally sampled by the PSA, and polarisation states in the bottom

hemisphere can be determined more accurately than those in the top hemisphere.

This hypothesis was further corroborated by an additional experiment, where Atetra

and Wtheory was used to produce the simulated dataset. In this case, the MLE al-

gorithm computed a Mueller matrix that matched the groundtruth Mueller matrix

in Equation 4.42. Since the MLE algorithm was seen to be unsuitable for the PSA

utilised in this work, the CLSQR algorithm, whose optimisation function is shown
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in Equation 4.34, was used instead. As will be demonstrated next, the CLSQR

algorithm was successful in retrieving the groundtruth Mueller matrix in the ideal

noiseless datasets, and was furthermore shown to provide better performance over

a simple matrix inversion for noisy data.

The CLSQR algorithm was tested using simulated detector intensities for an ideal

linear polariser and quarter waveplate at five orientation angles that spanned 0◦

to 180◦. The theoretical Mueller matrices corresponding to these test objects (see

Section 2.2) were combined with Atheory and Wtheory (see Equations 4.2 and 4.3)

using Equation 4.31 to simulate a noiseless dataset. Random Gaussian noise was

then added to the noiseless data such that the standard deviation corresponded to

a desired SNR value. In this simulated experiment, it was assumed that A and

W were known and ideal, and that noise came solely from the detector. In addi-

tion, it was further assumed that the measurements were Gaussian noise-limited,

and that the standard deviation of the noise was, σN , independent of the detec-

tor signal. SNR was then defined based on the expected signal at the four de-

tectors when the incident light is unpolarised. Specifically, if the incident Stokes

vector was ~Sin = [1 0 0 0]>, the detected intensity at each of the four detectors is

~D = Atheory
~Sin = [0.125 0.125 0.125 0.125]>. Therefore, the SNR was defined as

SNR = 0.125
σN

. Datasets with a SNR of 100 and 50 were tested, alongside a noiseless

dataset. The CLSQR algorithm was used on these datasets to compute M
′
, and

the difference between M
′

and the ideal Mueller matrix, M, was quantified by com-

puting the Frobenius norm of the difference matrix. The Frobenius norm for the

noiseless dataset is shown in Figure 4.24, while the mean Frobenius norm for the

two noisy datasets, averaged over 100 instances of noise, are presented in Figures

4.25 and 4.26. For comparison, the results were compared to those obtained via a

matrix inversion, as well as the MLE algorithm.
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Figure 4.24: Mean Frobenius norm obtained when using ideal noiseless data for the
(left) linear polariser and (right) quarter waveplate. For ease of comparison, the results

for the MLE algorithm have been divided by 100.
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Figure 4.25: Mean Frobenius norm obtained with the linear polariser. For ease of
comparison, the results for the MLE algorithm have been divided by 100.
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Figure 4.26: Mean Frobenius norm obtained with the quarter waveplate. For ease of
comparison, the results for the MLE algorithm have been divided by 100.
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It can be seen that in all test cases, the CLSQR algorithm had the best performance

out of the three algorithms tested. Since this was tested over different noise levels,

it can be seen that the algorithm provides some resilience to noise. Along with its

guarantee of a physical Mueller matrix, the CLSQR algorithm is therefore the su-

perior option for computing the Mueller matrix from the measured detector signals,

given the PSA and PSG used in this work, and was thus the algorithm implemented

for the computation of the Mueller matrix.

4.6 Scattering Sample Preparation and Charac-

terisation

4.6.1 Scattering Phantoms

In order to have test scattering media with known scattering properties, scattering

phantoms were prepared. The preparation and characterisation of these phantoms

is now discussed.

Preparation

Biological tissues typically have a MFP on the order of 100µm, and a scattering

anisotropy factor, g, that is close to 1 [8, 18]. To have phantoms that closely mimic

the scattering behaviour of tissues, the target scattering parameters for the phan-

toms were a MFP of 200µm and g that is close to 1.

Scattering phantoms consisting of silica microspheres (Merck, Monospher 1000E )

embedded in epoxy resin were chosen. The microspheres had a diameter of 1µm.

Refractive indices of both the silica microspheres and the epoxy resin were not avail-

able from the manufacturers, therefore, the refractive index of the microspheres was

assumed to be 1.457 at the wavelength of λ = 638nm that was used for this work

[202]. For initial calculations, a refractive index of 1.55 was taken for the back-

ground epoxy, given that typical refractive indices for epoxy range between 1.50

to 1.57 [203]. The actual refractive index of the epoxy resin was measured after

the phantoms were made. Therefore, given these parameters, the expected value
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for g was computed using Mie theory [142] to be 0.95 at the laser wavelength of

λ = 638nm. The thickness of the phantoms were chosen such that combinations of

the scattering phantoms would be able to provide thicknesses on the order of 3 to 4

transport MFP (TMFP). In cases where the phantoms were combined, immersion

oil, with a refractive index of 1.517 ± 0.001, was applied to the surfaces in contact

so as to minimise surface reflections. These thicknesses were chosen because it was

previously shown that for suspensions of similarly sized microspheres, light becomes

fully depolarised at similar thicknesses [144, 145]. Table 4.6 shows a summary of

the target parameters.

Parameter Value

Mean free path (MFP), l/µm 200

Transport mean free path (TMFP), ltr/mm 4.37

Scattering anisotropy factor, g 0.95

Thickness, L/mm 2,4,6,8,10

L
l

10,20,30,40,50

L
ltr

0.46,0.92,1.37,1.83,2.29

Table 4.6: Design parameters for the scattering phantoms.
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Figure 4.27: Flowchart describing the preparation of the scattering phantoms.

Figure 4.27 describes the preparation protocol of the scattering phantoms, which

followed closely the procedure described in [204]. First, the epoxy and hardener

(Easy Composites, GlassCast 50 Clear Epoxy Casting Resin) were mixed in a ratio

of 2:1 by volume. (63± 0.25)ml of the epoxy mixture was then mixed with (1.251±
0.001)g of microspheres, which were weighed using a laboratory balance (Oxford

Balances, A1204 ). This resulted in 1.421× 107 spheres per mm3, or equivalently a

scatterer fraction by volume of 0.0074. The proportions of spheres to epoxy were

pre-calculated using the planned scattering parameters. Unfortunately, due to a bug

in the code that was only discovered and corrected for later, the proportions used

corresponded to a theoretical MFP of 231µm rather than the originally planned

value of 200µm. Since the MFP did not differ from the planned value by a large

margin, the samples were left unchanged. Moreover, the actual MFP was measured

after the samples were made, and it is the measured MFP that is used for subsequent

analysis. The combined mixture was then left to stand for half an hour, after which

it was degassed in a vacuum chamber until air bubbles stopped appearing at the

surface. The degassed mixture was poured into cube-shaped silicone moulds, up to

the desired thicknesses, and the moulds were then placed in a pre-heated oven at

40◦C. The oven was switched off after four hours and the samples were left to stabilise
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overnight. The scattering samples were removed from the moulds on the following

day, but were left to harden further for another two days before polishing. Figure

4.28 shows the final de-moulded scattering samples before they were polished, with

a clear control sample on the top left that was made without any microspheres so

that the refractive index of the epoxy could be determined. The samples were then

characterised after polishing was complete. Before polishing, clumps of spheres were

observed on the bottom surface suggesting that sphere aggregation had occurred

during the fabrication process. This could cause the final MFP of the scattering

phantoms to differ from the design MFP. As such, the actual MFP of the phantoms

was characterised after fabrication, and this value was used for subsequent analysis

of the experimental results.

Figure 4.28: The scattering phantoms after de-moulding.

Phantom Background Refractive Index and Thickness

The refractive index of the background epoxy resin was determined by measuring

the clear control sample using an Abbe refractometer (Bellingham&Stanley, Abbe 5

Refractometer). The refractive index was found to be 1.5500±0.0005 at a wavelength

of 589nm. The thickness of the phantoms were measured using a vernier caliper at

the centre of the four edges. The resulting thicknesses are presented in Table 4.7

below. The phantoms are denoted as SM1 to SM5, in order of ascending thickness.
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Thickness/mm

Phantom Edge 1 Edge 2 Edge 3 Edge 4 Average

Clear 10.32 10.25 10.26 10.36 10.30

SM1 1.93 1.92 1.93 1.94 1.93

SM2 3.82 3.74 3.68 3.82 3.77

SM3 5.33 5.32 5.33 5.32 5.33

SM4 7.33 7.34 7.33 7.34 7.34

SM5 9.81 9.58 9.60 9.81 9.70

Table 4.7: Average and range of the measured thickness of each scattering phantom.
The measurements had a precision of 0.01mm.

Phantom Mean Free Path

The total transmitted ballistic power, P , for a scattering medium of a given thick-

ness, L, and MFP, l, is described by the Beer Lambert law, which is given by

Equation 2.58. This equation provides a means of determining the MFP of the

scattering phantoms. By measuring P and L for each scattering medium, as well as

Po, l can be established through a linear fit to the function

L = −l ln
(
P

Po

)
. (4.45)

Figure 4.29: Experimental setup used to measure the MFP of the scattering phantoms.

Figure 4.29 shows the setup used for measuring the MFP of the scattering phan-

toms. A HeNe laser (λ = 632.8nm, JDS Uniphase, Model 1103P) was used for

illumination. As the beam was observed to have a poor spatial profile, it was first
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directed through a beam expander, consisting of lenses L8 and L9. To spatially filter

the beam, a pinhole, with a diameter of 75µm, was placed at the focal point of L8,

which has a diffraction-limited spot size of 90µm. Lens L9 then collimated the light

emerging from the pinhole. The resulting beam was incident on the front surface of

the scattering medium, and the output intensity was recorded with a CMOS camera

(Ximea, MQ013MG-ON ) that was placed (26.5±0.5)cm away from the back surface

of the scattering medium. As can be inferred from Table 4.7, the two transverse

surfaces of the scattering phantoms are not completely parallel. This small wedge

angle causes the ballistic part of the transmitted beam to change slightly in position

for different phantoms due to refraction. As such, in order to spatially isolate the

ballistic part of the beam, it was not possible to use a fixed spatial filter, such as

a pinhole. Instead, a CMOS camera was used to image the output speckle and an

average over multiple uncorrelated speckle patterns was used to discriminate the

ballistic component. This was done as follows.

To determine the ballistic part of the transmitted beam in the acquired images,

images of the output speckle for each phantom was taken with the exposure of the

camera kept constant at 6.5ms for all phantoms. ND filters were placed before the

beam expander to adjust the incident illumination to ensure that the signal remained

unsaturated. The resulting images for the case without any phantom present, and

for SM1 and SM2 are shown in Figure 4.30 below. Unfortunately, no clear ballistic

component was observed for the thicker phantoms. This is demonstrated by the

mean speckle intensity obtained for SM3 on the bottom right of Figure 4.30, which

was computed as an average over 15 images. When the phantoms were shifted by

0.5mm, it was observed that the output speckle intensities before and after the shift

were spatially uncorrelated. As such, the phantom was moved by 0.5mm trans-

versely between each image. Since the addition of uncorrelated intensity speckle

patterns reduces the speckle contrast [63], any ballistic component present should

be made more distinct by averaging the 15 images. Nonetheless, no clear ballistic

component was observed.
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(a) No SM (b) SM1

(c) SM2 (d) SM3 (Average of 15 images)

Figure 4.30: Intensity images recorded by the CMOS camera.

The ballistic intensity measured for SM1 and SM2 was taken from an average over 15

intensity images, with each phantom moved by 0.5mm transversely between images.

The use of ND filters was necessary to prevent saturation of the signal because for a

fixed incident power, the difference in the range of intensity values when no phantom

was present, and when SM1 and SM2 were present, was too large for the dynamic

range of the camera. In order to account for the different incident power used for

each image, the intensity of the beam before and after the ND filters in each case was

measured using a power meter (Thorlabs PM100 ). The recorded data is presented

in Table 4.8, and was used to normalise the acquired images to the right intensities.
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Phantoms

None SM1 SM2

With ND, P/µW 0.016± 0.002 1.060± 0.003 -

Without ND, P/µW 163± 1 162± 1 172± 1

Table 4.8: Measured power before the scattering phantoms.

It was empirically determined that the observed ballistic spot had an approximate

size of 100 × 100 pixels, as indicated by the red box in Figure 4.30. Hence, to

obtain the MFP of the scattering phantoms, the total power within a 100 × 100

pixel window around the maximum of the averaged image was computed for SM1

and SM2, which were normalised by the total power observed when no phantom

was present, Po. A linear fit was then conducted using the natural logarithm of the

computed ratios and the corresponding thicknesses, resulting in the results shown in

Figure 4.31. The gradient of the fit then corresponds to the measured MFP. It can

be seen that the function was a good fit to the acquired data, and that the resulting

MFP was 395µm .

Figure 4.31: Fit of the function L = −l ln
(
P
Po

)
to the experimentally obtained ratios

for the computation of the MFP, compared to the plot that would have been obtained
with the target MFP of 231µm.

The measured MFP of the scattering phantoms is approximately twice that of the

target MFP. Despite thorough mixing and careful measurements being made in the
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fabrication process, it was inevitable that there would be some deviation from the

target parameters. For example, as it took time for the epoxy to set, it is possible

that the microspheres could drift downwards due to gravity. Further polishing of the

surfaces of the phantoms would also remove some of the microspheres that settled

near the surface. Nevertheless, as the MFP has been characterised, the scattering

phantoms can still be utilised in the experiments. The final ratios of L
l

and L
ltr

based

on the measured MFP and thickness are shown in Table 4.9 below.

Phantoms

SM1 SM2 SM3 SM4 SM5

L
l

4.89 9.53 13.48 18.57 24.56

L
ltr

0.22 0.44 0.62 0.85 1.12

Table 4.9: Ratios of L
l and L

ltr
of the phantoms computed from measured MFP and

thickness.

Average Mueller Matrices of the Phantoms

The Mueller matrices of the phantoms were measured to understand how their po-

larimetric properties, such as retardance, diattenuation and depolarisation, change

with thickness.

Using the setup that was previously described in Section 4.1, the Mueller matrix

of the phantoms were measured without single pixel imaging. The phantoms were

placed at the location indicated in Figure 4.1. A square illumination area, the same

size as a 16×16 Hadamard mask, was incident on the back surface of the phantoms,

and the object plane was empty. The detector intensities measured for all input and

analysed polarisation states was then used with Equation 2.44 to obtain the Mueller

matrix of each phantom. 20 measurements were taken for each phantom, and as was

done for the measurement of MFP, the sample was moved by 0.5mm in between each

measurement so as to acquire data over different instances of disorder. An average

Mueller matrix for each phantom was then computed from the 20 measurements.

For comparison, the Mueller matrix of the clear control sample that was made with

pure epoxy was also measured.
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A Lu-Chipman matrix decomposition (see Section 2.2) was conducted on the av-

erage Mueller matrices to obtain the retardance, diattenuation, depolarisation and

polarisance of each sample. These four quantities were plotted as a function of the

phantom thickness, and the result is shown in Figure 4.32. The four values corre-

sponding to the clear control sample are also indicated as a solid red line in each

plot for reference.

Figure 4.32: Parameters from the Lu-Chipman decomposition as a function of
phantom thickness. The dotted black lines indicate the maximum and minimum values

for each parameter over the 20 measurements.

Since the phantoms consist of randomly positioned microspheres, whose positions

are assumed to be uncorrelated, no particular polarisation state is expected to be

favoured. As such, it is expected that the main effect of an increase in medium

thickness is depolarisation. For incident linearly polarised light, depolarisation is

caused by the scrambling of scattering planes with each scattering event. On the

other hand, for incident circularly polarised light, depolarisation is due to randomi-

sation of both the propagation direction and helicity upon scattering [117, 144].

From the four plots, it is evident that, consistent with expectation, depolarisation

was the main phenomenon observed as the medium thickness increased, with the
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amount of depolarisation reaching about 0.27 for the thickest scattering phantom,

SM5. Retardance was close to the control values, and can thus be attributed mainly

to the background epoxy. The non-zero value of the retardance for both the control

and the phantoms could be due to the three-dimensional cross-linked structure of

the cured epoxy resin. The polarisance and diattenuation of the phantoms were also

slightly larger than those of the control, though the cause of this polarisance was

still unknown at the time of writing.

4.6.2 Biological Samples

This work opted to use slices of chicken breast as the biological scattering samples,

as chicken breast is a cost-efficient sample that is widely available. At the wave-

length of λ = 638nm used in this work, chicken breast has been reported to have a

scattering anisotropy factor of 0.96 and a TMFP of about 1.25mm [17, 205]. These

scattering parameters were required to estimate the ratio of thickness to TMFP of

the chicken breast samples. As only an approximation of this ratio is required, the

scattering parameters from literature were used. Needless to say, the accuracy and

comparability of these reported values depends on the experimental conditions and

procedures, but they are sufficient for use as a rule of thumb. As mentioned previ-

ously, it has been shown that light becomes fully depolarised at thicknesses of a few

TMFPs. Therefore, this ratio provides an intuition for the amount of depolarisation

expected. Moreover, it allows for a comparison between chicken breast samples and

scattering phantoms with similar TMFP ratios.

Preparation

Chicken breast fillets purchased from mainstream supermarkets were stored in the

fridge. Right before the measurements were taken, the chicken breast was removed

from the fridge and sliced with a meat slicer (Ital Stresa 250 Standard). As the meat

slicer was not a precision instrument, the settings on the meat slicer were simply

set to the minimum possible thickness, resulting in sample thicknesses of about

1mm. The actual thicknesses and polarimetric parameters of the samples used were

measured at the end of each experiment, and are specified in Chapter 6. The chicken

breast slice was mounted in a custom-made holder (see Figure 4.33), which had an
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open square window of size 1” × 1”, and was held in place with mounting screws.

The holder was also covered in a layer of matte black paint to minimise reflections.

Figure 4.33: Chicken breast sample mounted in the custom-made holder.
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System Characterisation

In this Chapter, the system described in Chapter 4 is characterised. In Section 5.1,

the polarimetric resolution of the system is first studied. The spatial homogeneity

of the incident beam is then investigated in Section 5.2. Finally, a discussion on the

factors affecting the spatial resolution and imaging depth that is achievable by the

proposed technique is given in Section 5.3.

5.1 Polarimetric Resolution

The polarimetric sensitivity of the system, defined in this work as the smallest

change in the Mueller matrix elements which can be reliably detected, depends

on the amount of noise present in the measurements. Noise in the measurements

can come from various sources, such as laser intensity fluctuations, electronic noise,

and detector noise. If the amount of measurement noise is known, it is possible

to estimate the polarimetric sensitivity of the setup by propagating the measured

fluctuations to the spatially resolved Mueller matrices. The resulting variance in

the elements of the spatially resolved Mueller matrix is then an estimate of the

polarimetric sensitivity of the setup, as it describes the random fluctuations in the

Mueller matrix elements that are due solely to noise. In this section, a method

for error propagation through the single pixel polarimetry setup is outlined, and an

estimate of the polarimetric sensitivity of the system is computed.
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The computation of the spatially resolved Mueller matrix begins with single pixel

imaging. Assuming a direct inversion of Equation 4.29 is used, the object intensity

transmission is computed via Equation 4.30. As discussed in Section 4.4, to obtain

~y, the acquired data by the photodiodes is processed by taking the difference in

the signal measured for the positive and negative masks projected for single pixel

imaging. This can be written mathematically as

~yij = ~yij,+ − ~yij,− , (5.1)

where ~yij,+ and ~yij,− are the photodiode measurements corresponding to the positive

and negative masks respectively. Consequently, the variance of ~y can be computed

as

Var(~yij) = Var(~yij,+) + Var(~yij,−)− Cov(~yij,+, ~yij,−) , (5.2)

where Var(...) and Cov(...) denote the variance and covariance respectively. Assum-

ing uncorrelated noise in the two measurements for each spatial mask, the variance

of ~yij can then be computed as a sum of the variances of the individual measure-

ments.

The covariance matrix describing the fluctuations in the resulting image, for the

jth input and ith analysed polarisation state, can be defined as

Kx,ij = 〈∆~xij∆~xTij〉 , (5.3)

where ∆~xij = ~xij − 〈~xij〉, with 〈...〉 denoting an averaging over different instances

of noise. Substituting Equation 4.30 into Equation 5.3, the covariance matrix of

the computed image pixels, Kx,ij, can be related to the covariance matrix of the

measured projections, Ky,ij, as

Kx,ij = 〈Φ−1∆~yij∆~y
T
ij (Φ−1)T 〉

= Φ−1Ky,ij(Φ
−1)T .

(5.4)

Assuming that the noise between different measurements is independent, Ky,ij in

Equation 5.4 is a diagonal matrix, with the variance of each measured projection
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along the diagonal.

The reconstructed intensity images are then processed on a pixel-wise basis to ob-

tain the final polarimetric image, as described by Equation 4.32. For the nth image

pixel, the covariance of the computed Mueller matrix elements can be described in

terms of the 16× 16 element covariance matrix, KM,n, as

KM,n = 〈vec(∆Mn)vec(∆Mn)T 〉 = 〈(∆ ~Mn)(∆ ~Mn)T 〉 . (5.5)

Here, ∆Mn = Mn − 〈Mn〉 and ∆ ~Mn is the vectorised form of ∆Mn. Vectorising

Equation 4.32 gives

~Mn = vec(A−1DnW
−1) = ((W−1)T ⊗A−1) ~Dn , (5.6)

where ~Dn is the vectorised form of Dn. Combining Equations 5.5 and 5.6, it can be

shown that

KM,n = (WT ⊗A)−1KD,n(W ⊗AT)−1 , (5.7)

where KD,n = 〈∆ ~Dn∆ ~DT
n 〉, and ∆ ~Dn = ~Dn − 〈 ~Dn〉. Equation 5.7 describes the

relationship between the covariance matrix of the pixel-wise detector measurements,

KD,n and the covariance matrix of the Mueller matrix elements, KM,n. If it is

assumed that the noise across different detectors and different input polarisation

states is independent, KD,n is a diagonal matrix, with the variances of each detector

for each input polarisation state along the diagonal. For single pixel polarimetry,

these diagonal elements in KD,n are related to Ky,ij in the previous analysis as

diag (KD,n) = vec


Kx,11,n Kx,12,n Kx,13,n Kx,14,n

Kx,21,n Kx,22,n Kx,23,n Kx,24,n

Kx,31,n Kx,32,n Kx,33,n Kx,34,n

Kx,41,n Kx,42,n Kx,43,n Kx,44,n

 , (5.8)

where diag(KD,n) represents the elements on the diagonal of KD,n, and Kx,ij,n is the

nth element on the diagonal of Kx,ij. When the assumption of independent noise

across detectors and input polarisation states is not made, then KD,n has to be
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computed from its definition, KD,n = 〈∆ ~Dn∆ ~DT
n 〉.

For single pixel polarimetry, Equations 5.4 and 5.7 allow KM to be computed from

the measurement noise. The variance of the Mueller matrix elements can then be

extracted from the diagonal of KM . As a note, when the optical system is used

in non-imaging mode (i.e. without single pixel imaging), then Equation 5.7 alone

describes the covariance matrix of the final Mueller matrix.

To estimate the polarimetric sensitivity of the system, the standard deviation of

the measurements was investigated. Due to the polarimetric elements in front of

the detectors in the PSA, the data acquired by the four photodiodes depends on

both the intensity as well as the polarisation state of the incident beam. This makes

it difficult to compare the noise characteristics across the four photodiodes. Hence,

in this experiment, the polarimetric elements in front of the detectors were removed

so that only intensity fluctuations were measured. As the four detectors were the

same model, it was expected that they showed similar noise characteristics. This

was verified by checking the noise characteristics over two photodiodes, specifically,

detectors 3 and 4. The experiment was conducted at different illumination levels

covering the full detector range of 10V , with the different illumination levels im-

plemented by projecting squares of different sizes onto an empty sample plane. As

the parameters utilised for lock-in detection had been optimised for the low light

levels associated with the presence of a scattering medium (see Section 4.4.2), ND

filters (Thorlabs NE10A and NE20A) were used to ensure that the detector signal

remained unsaturated for all illumination levels. 1000 datapoints were acquired for

each illumination level, and the mean and standard deviation of the collected data

were computed. For brevity, the mean of the data at illumination level p is hereby

denoted as 〈Dp〉, while the standard deviation is denoted as σp.
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5.1 Polarimetric Resolution

Figure 5.1: Standard deviation as a function of mean signal level for
(left) Detector 3 (right) Detector 4.

Figure 5.1 shows the results for both detectors. It can be seen that for both detec-

tors, the standard deviation of the data is approximately constant at about 0.005

across the full detector range. This suggests that the noise is independent of the

illumination level. Under this assumption, a plot of β = log10

(
σp
〈Dp〉

)
versus 〈Dp〉

can be fitted by the function β = log10

(
c
〈Dp〉

)
, where c is an estimate of the standard

deviation to be determined by the fit. This fit was conducted for both datasets and

the results are shown in Figure 5.2.

Figure 5.2: Fit results for (left) Detector 3 (right) Detector 4.

c was found to be 0.0045 for detector 3 and 0.0043 for detector 4, with corresponding

R-squared values of 0.95 and 0.96 respectively. Considering Figures 5.1 and 5.2, as

well as the goodness of fit, it can be concluded that the standard deviation of the

data is, as initially assumed, independent of intensity level. Moreover, given the

similarity of the two results shown in Figures 5.1 and 5.2, the detectors can also be
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concluded to have similar noise characteristics, with an average standard deviation

of 0.0044V computed from the two detectors tested.

Based on these measurements, the covariance matrix of the Mueller matrix ele-

ments obtained via single pixel imaging polarimetry was calculated using Equations

5.4 and 5.7. This was done for both imaging and non-imaging experiments using the

experimental instrument matrices determined from calibration. For imaging exper-

iments, since noise was observed to be independent of illumination level, it follows

that the diagonal elements of Kx,ij are equal with a value of
√

(2× σ2
p) = 0.0064.

It was further assumed that noise across detectors and input polarisations was in-

dependent. As such, KD,n was also a diagonal matrix, with diagonal elements of

0.0064. For the non-imaging experiments, the diagonal elements of KD were iden-

tically equal to σp = 0.0044. The resulting standard deviations are shown in Tables

5.1 and 5.2.

0.0008 0.0015 0.0016 0.0012

0.0009 0.0017 0.0019 0.0014

0.0012 0.0022 0.0025 0.0018

0.0015 0.0028 0.0030 0.0022

Table 5.1: Predicted standard deviation in the Mueller matrix elements with single
pixel imaging.

0.0006 0.0010 0.0011 0.0008

0.0006 0.0012 0.0013 0.0010

0.0008 0.0016 0.0017 0.0013

0.0010 0.0020 0.0021 0.0016

Table 5.2: Predicted standard deviation in the Mueller matrix elements without single
pixel imaging.

To see how these predictions compare to experiment, using the same instrument

matrices as the above, the Mueller matrix of air was measured 1000 times. The

experiment was done without single pixel imaging. In addition, for a fair compari-

son, the Mueller matrices were obtained without using the CLSQR algorithm, which
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is expected to reduce the resulting fluctuations due to noise. The mean and stan-

dard deviation of the computed Mueller matrices are shown in Tables 5.3 and 5.4

respectively.

1.0000 0.0010 0.0032 0.0007

−0.0065 1.0057 0.0287 0.0123

0.0008 0.0100 0.9900 0.0145

−0.0131 0.0236 −0.0193 1.0099

Table 5.3: Mean of the measured (un-normalised) Mueller matrices from 1000
measurements of air.

0.0036 0.0021 0.0017 0.0012

0.0023 0.0041 0.0068 0.0033

0.0029 0.0056 0.0053 0.0038

0.0031 0.0040 0.0050 0.0027

Table 5.4: Standard Deviation of the measured Mueller matrices from 1000
measurements of air.

The average measured Mueller matrix can be seen to be close to the expected identity

matrix. On the other hand, the standard deviation of the measured Mueller matrices

is seen to be larger than the predicted values in Table 5.2. This difference suggests

the presence of other noise sources which have not been accounted for in the analysis.

The presence of unaccounted noise sources is further evidenced by Table 5.5, which

shows the standard deviation of the four detector outputs for each input polarisation

from the 1000 measurements of air. It can be seen that these values are larger

than the standard deviation of 0.0044V measured in the previous experiment (see

Figure 5.1). Furthermore, the standard deviation in the Mueller matrix elements was

recomputed using the detector noise covariance matrix that was directly calculated

from the measurements as KD = 〈∆ ~D∆ ~DT 〉, and the results were found to be

identical to those in Table 5.4, thereby validating the method of error propagation.

The computed matrix KD was observed to have significant off-diagonal elements,

as shown in Figure 5.3. This suggests the presence of a common-mode noise, which
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causes the noise across detectors to become dependent on each other. One possible

unaccounted noise source that is consistent with these findings could be variations in

the polarisation states produced by the voltage-controlled variable waveplate. Such

variations would not cause a change in intensity when polarisation elements in front

of the detectors are removed, and would thus not be apparent in the results shown in

Figure 5.1. As this is a noise on the illumination, the noise across the four detectors

can no longer be assumed to be independent. Furthermore, variations in the input

polarisation state would cause the resulting noise measured by four detectors in the

PSA to become sample-dependent.

Input Polarisation States

Detectors Input 1 Input 2 Input 3 Input 4

D1 0.011 0.013 0.007 0.011

D2 0.003 0.013 0.029 0.053

D3 0.012 0.004 0.033 0.012

D4 0.017 0.014 0.024 0.012

Table 5.5: Standard deviation of the detector measurements from 1000 measurements
of air. Each row corresponds to a detector, while each column corresponds to an input

polarisation.

Figure 5.3: Plot of KD for the 1000 measurements of air.
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In summary, a method for error propagation through the single pixel polarimetric

setup was presented. From the analysis, it can be seen that under the sole consider-

ation of intensity noise, the elements of the Mueller matrix obtained through single

pixel polarimetry are expected to have fluctuations less than 0.003 when single pixel

imaging is used, and 0.002 when single pixel imaging is not used. However, the

experimentally measured fluctuations were larger than this expected value, with a

maximum standard deviation observed of 0.007 when single pixel imaging was not

used. This was shown to be caused by other noise sources that were not accounted

for in the analysis, probably noise due to the variability of the input polarisation

state generated by the LCVWPs. Nevertheless, the measured standard deviation

of the Mueller matrix in Table 5.4 gives an indication of the magnitude of the fluc-

tuations that can be expected in the Mueller matrix for the experimental setup

used.

5.2 Illumination Homogeneity

To check the spatial homogeneity of the illumination, single pixel imaging was con-

ducted using the setup presented in Chapter 4 with an empty object plane. Figures

5.4 to 5.7 show the resulting reconstructed images for each input polarisation state,

normalised to the maximum value of each image.
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Figure 5.4: Intensity at each detector for the first input polarisation state,
reconstructed using single pixel imaging. The intensity values for each detector have

been normalised by their respective maximum values. Average (un-normalised) intensity
for each detector is provided in the title for reference

Figure 5.5: Intensity at each detector for the second input polarisation state,
reconstructed using single pixel imaging. Refer to caption of Figure 5.4 for details.
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5.2 Illumination Homogeneity

Figure 5.6: Intensity at each detector for the third input polarisation state,
reconstructed using single pixel imaging. Refer to caption of Figure 5.4 for details.

Figure 5.7: Intensity at each detector for the fourth input polarisation state,
reconstructed using single pixel imaging. Refer to caption of Figure 5.4 for details.

It can be seen that the ratio of the minimum to maximum intensity in each image

is minimally 0.5. In addition, it can be observed that the spatial profile of the

beam is not close to the ideal Gaussian profile expected for the incident laser beam.

Furthermore, it can be seen that the spatial variation in intensity is dependent on

the incident and analysed polarisation state (c.f. images for detector 4 in Figures
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5.5 and 5.6). This suggests that the spatial variation measured by the detectors is

caused by a spatial inhomogeneity in the incident polarisation state, which could

be caused by a non-ideal spatial inhomogeneity in the VWPs, a known problem

for LCVWPs [206]. Another possible cause of the spatial inhomogeneities seen in

Figures 5.4 to 5.7 could be detector noise which is propagated to the reconstructed

images. From Table 5.5, it can be seen that the highest recorded standard deviation

for non-imaging polarimetric measurements over air was 0.05. Taking an extreme

example that all measurements exhibited this maximum standard deviation of 0.05,

Equation 5.4 predicts that the reconstructed images from single pixel imaging would

have a standard deviation of
√

2(0.05)2 = 0.071. This value is about 15% of the

highest intensity measured in Figures 5.4 to 5.7 (i.e. 〈I〉 = 0.4555 in Figure 5.7).

As such, it is possible that detector noise is one of the causes behind the spatial

inhomogeneities observed in Figures 5.4 to 5.7.

5.3 Factors Affecting Spatial Resolution and Imag-

ing Depth

This section discusses the factors influencing the best achievable spatial resolution

and the maximum imaging depth for single pixel polarimetric imaging.

As discussed in Section 2.4, the spatial resolution of single pixel polarimetric imaging

is basically determined by the size of the pixels projected onto the object plane. As

such, the best achievable spatial resolution depends on two factors. The first factor

is the width of the PSF related to the imaging optics used to image the SLM onto

the object plane. The second factor is the minimum pixel size required such that

the Mueller matrix of the scattering medium becomes independent of the instance

of disorder, as well as the location of the input pixel. As discussed in Section 3.2.2,

this second factor is important when considering the practicality of the technique.

The minimum pixel size required to ensure the independence of the Mueller matrix

has been shown to be determined by the width of the correlation function C(~ρ12, ~ρ
′
12)

(see Section 3.2.2). In turn, C(~ρ12, ~ρ
′
12) is reliant on how far two input point sources

can be before the speckle field observed at a common output point becomes uncor-
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related, as well as the width of the ensemble-averaged intensity profile from a point

source. As such, it is necessary that the pixel size implemented is larger than both

of these quantities. As a consequence, it was seen in Section 3.2.2 that the pixel size

required is larger for thicker scattering media. The smaller the width of C(~ρ12, ~ρ
′
12)

and the PSF, the better the spatial resolution that can be expected from single pixel

polarimetric imaging.

For the setup used in this work, the PSF related to the imaging optics used to

image the SLM onto the object plane had a radius of 7.35µm (see Section 4.2).

On the other hand, the width of C(~ρ12, ~ρ
′
12) depends on the scattering sample, and

was, unfortunately, challenging to quantify, both experimentally and computation-

ally. Nevertheless, this implies that the minimum achievable pixel size for the setup

described in Chapter 4 is, at best, 7.35µm. Higher NA lenses could potentially be

used in the design to reduce the size of the PSF. This, however, increases the an-

gular spread of plane waves propagating through the system, which would result in

a depolarisation of the applied input polarisation state due to an averaging of the

Mueller matrices corresponding to each plane wave component [152].

The imaging depth that the technique can be applied to depends on the pixel size

used, the level of noise in the system and the depolarisation length of the scattering

medium. The smallest imaging depth required by these three elements is then the

maximum imaging depth attainable with the proposed technique. As mentioned

above, the minimum pixel size required to minimise the variance of the Mueller ma-

trix across instances of disorder is larger for thicker scattering media. Consequently,

the imaging depth is affected by the choice of pixel size. The noise level of the

system is also a factor because the amount of scattered light that is collected for a

fixed NA decreases as a function of scattering medium thickness. As such, for any

given noise level, there will be a limit on the maximum thickness after which the

collected signal becomes indistinguishable from noise (i.e. SNR = 1). Systems with

less noise can thus image at larger imaging depths. For an arbitrary noise level, the

limit on imaging depth depends on the scattering properties of the medium itself.

Specifically, a higher scattering anisotropy factor would allow for greater imaging
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depths, as more of the incident light would be scattered in the forward direction. A

medium with a longer mean free path would also allow deeper imaging, since the in-

cident photons would undergo less scattering for any given thickness. Finally, single

pixel polarimetric imaging can only work if the scattering medium does not fully de-

polarise the incident light. In an extreme scenario, if the depolarisation factor, ∆, of

the Mueller matrix, obtained from a Lu-Chipman decomposition (see Section 2.2.7),

is one, then the exiting light is completely depolarised for all input polarisation

states. The related Mueller matrix is non-invertible and single pixel polarimetric

imaging would not work as the non-invertibility of the Mueller matrix implies that

there are many solutions for the input polarisation state for any measured output

polarisation state, which is logical since any input polarisation state would give the

same unpolarised output. It should be noted that the converse is not generally true

- a ∆ less than one does not necessarily imply an invertible Mueller matrix, as one

of the principle axes of the associated depolariser could still be fully depolarising.

The depolarisation length of the scattering medium provides an indication of the

thicknesses at which incident light becomes fully depolarised. The proportion of

light emerging from the scattering medium that is still polarised can be quantified

in terms of the DOP, DOLP and DOCP, as defined in Section 2.2. The DOLP

and DOCP have been used to study the depolarisation rate of incident linearly and

circularly polarised light respectively [144, 145]. In these studies, the depolarisation

length was determined as the scattering medium thickness after which the DOLP

or DOCP decreased past a minimum threshold, for example 1
e
, beyond which the

exiting light can be considered depolarised. It was found that the depolarisation

lengths varied depending on the input polarisation state and the specific properties

of the scatterers (e.g. scatter concentration, size), and was generally on the order

of a few transport mean free paths. Since linear and circular states form a basis for

any arbitrary polarisation states, these depolarisation lengths give an indication of

the thicknesses at which single pixel polarimetric imaging can work.

The DOLP and DOCP of light transmitted by the scattering phantoms used in

this work were computed from their corresponding Mueller matrices, which were

measured using the setup described in Chapter 4. As was done for the measure-
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ments of mean free path (see Section 4.6), 20 measurements of the Mueller matrix

were taken for each phantom, with the sample translated by 0.5mm transversely

between each measurement. The output speckle related to each sample translation

were observed to be uncorrelated, therefore each measurement was considered to be

of a different instance of disorder. The average Mueller matrix, computed from the

20 measurements, was then used to compute the DOLP and DOCP corresponding

to incident light with the relevant polarisation state. This was accomplished by

multiplying the average Mueller matrix with the input Stokes vectors for x and y

linearly polarised light, as well as left and right circularly polarised light, which can

be written respectively as

~Sin,x = [1 , 1 , 0 , 0]T ,

~Sin,y = [1 ,−1 , 0 , 0]T ,

~Sin,R = [1 , 0 , 0 , 1]T ,

~Sin,L = [1 , 0 , 0 ,−1]T .

(5.9)

For each incident linearly polarised Stokes vector, the DOLP was computed from

the exiting Stokes vector using Equation 2.29. Similarly, the DOCP was computed

for each incident circularly polarised Stokes vector. The results for the four input

Stokes vectors are plotted in Figure 5.8 as a function of medium thickness. The top

horizontal axis shows the ratio of the medium thickness to mean free path, while

the bottom axis shows the medium thickness normalised by the transport mean

free path. The depolarisation length cannot be determined based on this data as

there is a lack of datapoints at lower DOLP/DOCP, and the plot does not necessarily

follow a linear trend [16]. Nevertheless, the minimum degree of polarisation observed

was 0.679, which implies that single pixel polarimetric imaging is possible for these

scattering phantoms, provided that there is sufficient SNR and a large enough pixel

size.
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Figure 5.8: Plot of the degree of polarisation as a function of sample thickness for
different input polarisation states. The top and bottom axes shows the ratio of thickness
and mean free path and the ratio of thickness and transport mean free path respectively.
Key: PL(x): DOLP for input x linearly polarised light, PL(y): DOLP for input y linearly

polarised light, PC(R): DOCP for input right circularly polarised light and PC(L):
DOCP for input left circularly polarised light.
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Imaging results with a

pre-calibrated scattering medium

The proposed imaging technique discussed in Section 3.1.3 was used to image the test

objects described in Section 4.1.2, through the various scattering samples detailed

in Section 4.6. This chapter presents the imaging results with a pre-calibrated

scattering medium, that is, when the Mueller matrix of the scattering medium is

measured beforehand. Section 6.1 and Section 6.2 show the results from the prepared

scattering phantoms and chicken breast respectively.

6.1 Scattering Phantoms

As mentioned in Section 2.3, the TMFP corresponds to an average distance past

which the direction of the propagating photon can be considered to be fully ran-

domised. Past this distance, spatial information of the light incident on the scat-

tering medium is fully scrambled, but polarimetric information can still persist

[144, 145]. As such, the proposed method was tested on the scattering phantoms

with thickness to TMFP ratios that were greater than or approximately equal to

one TMFP. Out of the five scattering phantoms (see Section 4.6.1), SM4, SM5 and

their combination (denoted as SM6), were chosen to test the proposed method. The

corresponding thicknesses to MFP and TMFP ratios are shown in Table 6.1.
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Phantoms

SM4 SM5 SM6

L
l

18.57 24.56 43.13

L
ltr

0.85 1.12 1.97

Table 6.1: Ratios of L
l and L

ltr
of the phantoms used to test the proposed method.

In this section, to demonstrate the proposed technique, the reconstructed images of

the test objects hidden behind SM4 are first presented and analysed. The results

are then extended to the thicker scattering media, SM5 and SM6.

6.1.1 Measured Mueller Matrix for SM4

The Mueller matrix of SM4 was measured using the setup presented in Figure 4.1,

with the DMD was set such that an illumination area matching the size of the 16×16

Hadamard masks was incident on the input surface of the scattering medium. This

measured Mueller matrix was used to correct for the contribution of the scattering

medium, as described previously in Section 4.5. The CLSQR algorithm (see Section

4.5.2), along with the calibrated instrument matrices (see Section 4.3) were used to

compute the Mueller matrix. Normalising the computed Mueller matrix to its M00

component yields

MSM =


1.00 −0.02 0.00 0.01

−0.01 0.83 0.10 −0.14

−0.05 0.02 0.75 0.10

0.04 0.16 −0.09 0.84

 . (6.1)

The polarimetric properties of SM4 have been discussed previously in Section 4.6.1.

It should be noted that this Mueller matrix was for a single instance of disorder and

was not an average over multiple measurements. In addition, MSM can be seen to

be largely diagonal, which is typical for ensembles of microspheres in the multiple

scattering regime [207].
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6.1.2 Spatially Homogeneous Objects

The proposed technique was first tested on spatially homogeneous objects, specifi-

cally a linear polariser with its transmission axis at −20◦, and a quarter wave plate

with its fast axis at 40◦. These test objects have been detailed previously in Section

4.1.2. For reference, the theoretical Mueller matrix for a linear polariser with its

transmission axis at −20◦ is given by

MLP,theory =


1.00 0.77 −0.64 0.00

0.77 0.59 −0.49 0.00

−0.64 −0.49 0.41 0.00

0.00 0.00 0.00 0.00

 , (6.2)

while that for a quarter wave plate with its fast axis at 40◦ is

MQWP,theory =


1.00 0.00 0.00 0.00

0.00 0.24 0.13 −0.96

0.00 0.13 0.98 0.17

0.00 0.96 −0.17 0.22

 . (6.3)

Note that the manufacturer-listed retardance of 0.2151 waves at the laser wave-

length was used to compute MQWP,theory. Each test object was placed in the object

plane, as depicted in Figure 4.1, and measurements were first taken for each test

object without the scattering medium present, using the data acquisition procedures

described in Section 4.4. In order to avoid saturating the photodiodes, ND filters

(Thorlabs NE10A and NE20A) were used to attenuate the incident illumination.

After the measurement was complete, the ND filters were removed and the scat-

tering medium, SM4, was placed in between the object and the PSA, as shown in

Figure 4.1, and the measurement was repeated. The two acquired datasets were

then processed using the methods discussed previously in Section 4.5 to yield the

spatially resolved polarimetric images.

Before comparing the results with and without the scattering medium present, the

validity of the Mueller matrices obtained without the scattering medium was first
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verified. This was done by averaging each Mueller matrix element across all pix-

els, and comparing the resulting averaged Mueller matrix for each test object to

the Mueller matrix of the same test object that was obtained without single pixel

imaging (i.e. non-imaging polarimetry). Both Mueller matrices were normalised to

their respective M00 elements before comparison. Usually, the M00 element can be

interpreted as the unpolarised transmittance of the sample (see Section 2.2.7), but

as the illumination intensity during the calibration was attenuated by ND filters

(see Section 4.3) that were not used in the experiments with the scattering medium

present, the M00 element is, instead, directly proportional to the unpolarised trans-

mittance of the sample. This distinction is important as it is then possible to have

M00 values that are greater than 1. Nevertheless, normalising each Mueller matrix to

their respective M00 elements is equivalent to an intensity normalisation, so that the

polarimetric parameters can be better compared. As the Mueller matrices obtained

in the non-imaging polarimetry setup have previously been validated in Section 4.3,

this comparison would highlight any additional errors caused by single pixel imag-

ing. For the linear polariser, the spatially averaged Mueller matrix, normalised to

the M00 element, was

MLP,SPI =


1.00 0.66 −0.71 −0.04

0.72 0.48 −0.51 −0.02

−0.67 −0.44 0.48 0.04

−0.11 −0.08 0.08 0.01

 , (6.4)

while the Mueller matrix obtained from non-imaging polarimetry was

MLP,no SPI =


1.00 0.65 −0.75 −0.03

0.72 0.48 −0.54 −0.01

−0.68 −0.44 0.52 0.03

−0.11 −0.08 0.08 0.01

 . (6.5)

As explained in Section 4.3, differences between experimental and theoretical Mueller

matrices can be expected due to experimental uncertainties and imperfections in

the optical element under test. Since the non-imaging single pixel polarimeter has

previously been verified (see Section 4.3), to validate the single pixel polarimeter, it
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is more instructive to consider differences between MLP,SPI and MLP,no SPI than to

compare them to their theoretical counterparts. The values in these two matrices

can be seen to be similar, with a maximum difference of 0.04. For the quarter

waveplate, the spatially averaged Mueller matrix, normalised to the M00 element,

was

MQWP,SPI =


1.00 −0.02 −0.02 −0.01

0.00 0.24 0.30 −0.88

−0.02 0.13 0.90 0.34

−0.01 0.94 −0.17 0.19

 , (6.6)

while the Mueller matrix obtained from non-imaging polarimetry was

MQWP,no SPI =


1.00 −0.02 −0.02 −0.01

0.00 0.24 0.31 −0.90

−0.02 0.12 0.91 0.34

0.00 0.96 −0.18 0.19

 . (6.7)

The maximum difference between these two matrices was 0.02. The differences ob-

served for both test objects were similar to the deviations observed in Section 4.3.

As such, single pixel imaging did not introduce significant error, and the Mueller

matrices obtained by single pixel polarimetry were deemed to be reasonable.

The imaging results computed for the linear polariser, without and with SM4 present,

are shown in Figures 6.1 and 6.2 respectively, while those for the quarter waveplate

are presented in Figures 6.3 and 6.4. For all imaging results shown in this chapter,

pixels in the spatially resolved Mueller matrices are normalised to their respective

M00 values, which as previously explained, allows for an easier comparison of the po-

larimetric properties across pixels. The M00 matrix element, however, is presented in

its original form as it is directly proportional to the unpolarised transmittance of the

sample, and hence shows the intensity image recovered by single pixel polarimetric

imaging.
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Figure 6.1: Spatially resolved Mueller matrix for an unobscured linear polariser with
its transmission axis at −20◦. Matrix elements, other than M00, are normalised to their

respective M00 values. The x and y axes for each plot correspond to pixel indices.

Figure 6.2: Spatially resolved Mueller matrix for a test linear polariser with its
transmission axis at −20◦, hidden behind SM4. Matrix elements, other than M00, are

normalised to their respective M00 values. The x and y axes for each plot correspond to
pixel indices.
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6.1 Scattering Phantoms

Figure 6.3: Spatially resolved Mueller matrix for an unobscured quarter waveplate with
its fast axis at 40◦. Matrix elements, other than M00, are normalised to their respective

M00 values. The x and y axes for each plot correspond to pixel indices.

Figure 6.4: Spatially resolved Mueller matrix for a test quarter waveplate with its
transmission axis at 40◦, hidden behind SM4. Matrix elements, other than M00, are

normalised to their respective M00 values. The x and y axes for each plot correspond to
pixel indices.
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Qualitatively, it can be seen that for both test objects, the images obtained with

and without SM4 present are generally similar, which indicates the feasibility of the

proposed technique. For each test object, the similarity between the two images

was quantified using an element-wise RMSE for each Mueller matrix element. As

the illumination intensity was changed between the two measurements, the element-

wise RMSE was computed after normalising each pixel in the obtained polarimetric

images by their respective M00 value. Mathematically, the element-wise RMSE of

the (i, j)th Mueller matrix element was computed as

RMSEij =

√√√√ 1

256

256∑
k=1

(
MO

ijk −M
O,SM
ijk

)2

, (6.8)

where MO
ijk and MO,SM

ijk are, respectively, the (i, j)th Mueller matrix elements for the

kth pixel without and with the scattering medium present.

Comparing the reconstructed images with and without SM4 present, the resulting

element-wise RMSE values computed for the linear polariser and quarter waveplate,

denoted as RMSELP and RMSEWP respectively, were

RMSELP =


0.00 0.08 0.07 0.07

0.04 0.07 0.06 0.10

0.07 0.06 0.11 0.07

0.12 0.10 0.10 0.07

 . (6.9)

RMSEWP =


0.00 0.03 0.04 0.03

0.04 0.09 0.09 0.03

0.05 0.08 0.03 0.07

0.04 0.04 0.07 0.07

 . (6.10)

The maximum RMSE in both cases was about 0.1, which is slightly larger than

the deviations observed in Section 4.3. One possible source of error could be spatial

variations in MSM caused by spatial inhomogeneities in SM4 that were unaccounted

for in the data processing, such as spatial variations in the density of the formed

crosslinks in the background epoxy [208] in SM4. Errors due to spatial variations
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6.1 Scattering Phantoms

in the scattering medium can be accounted for by correcting for its contribution on

a pixel-wise basis, by using the spatially resolved Mueller matrix for the scattering

medium without any test object present. The maximum RMSE values computed in

this manner for the linear polariser and the quarter waveplate were 0.14 and 0.13

respectively. Since the RMSE did not improve by a pixel-wise correction for the

scattering medium, it was concluded that spatial inhomogeneities in SM4 were not

the main cause of the increased error.

Other possible sources of error could be experimental uncertainties in the measured

MSM and experimental noise (see discussion in Section 5.1). The latter, along with

a spatially varying illumination (see Section 5.2), results in a spatially varying SNR.

For a fixed input and analysed polarisation state, the detector noise related to each

projected spatial mask used for single pixel imaging can be considered to be inde-

pendent and equal in magnitude. As such, according to Equation 5.4, this results

in the same magnitude of uncertainty for each pixel. This implies that the SNR

varies with the illumination level, and is lowest at the edges of the image where the

intensity of the beam is also at its lowest. This variation in SNR leads to spatially

varying uncertainties in the determined spatially resolved Mueller matrix, which

are worsened by the normalisation of the Mueller matrix by its M00 element. The

effect of a spatially varying SNR on the obtained polarimetric image is evidenced

in Figure 6.5, which, for each test object, shows the absolute difference between the

Mueller matrices obtained with and without SM4 present, averaged across all 16

Mueller matrix elements. The differences can be seen to be largest at the edges of

the image, which are the image regions with the lowest SNR. This suggests that

experimental noise is likely a significant factor behind the errors observed.
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Chapter 6: Imaging results with a pre-calibrated scattering medium

(a) Linear polariser (b) Quarter waveplate

Figure 6.5: Absolute of the difference between the Mueller matrices obtained with and
without SM4 present for the two homogeneous test objects, averaged across all Mueller

matrix elements. The x and y axes of the plot correspond to pixel indices.

6.1.3 Spatially Inhomogeneous Test Object

Having seen the feasibility of the proposed method on spatially homogeneous test

objects, the natural next step was to test the same method on a test object ex-

hibiting spatial inhomogeneity. The spatially inhomogeneous test object, depicted

in Figure 4.2, was placed in the object plane, as shown in Figure 4.1. For reference,

measurements were first taken without the scattering medium present using the

data acquisition procedures described in Section 4.4. As was done for the spatially

homogeneous test objects, ND filters (Thorlabs NE10A and NE20A) were used to

attenuate the incident illumination to prevent saturation of the photodiodes. The re-

sulting polarimetric image, obtained through the data processing methods discussed

previously in Section 4.5, is shown in Figure 6.6.
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6.1 Scattering Phantoms

Figure 6.6: Spatially resolved Mueller matrix for the spatially inhomogeneous test
object without any scattering medium present. Matrix elements, other than M00, are

normalised to their respective M00 values. The x and y axes for each plot correspond to
pixel indices.

The letter R is clearly visible in the image. In addition, three distinct regions can

be seen in the left, centre and right of the image shown in Figure 6.6, corresponding

respectively to the regions covered by the scotch tape, glass and linear polariser.

SM4 was then inserted in between the object and the PSA, as shown in Figure 4.1,

and the ND filters were removed. Figure 6.7 shows an intensity image that was

taken of the obscured test object using a spatially resolved CMOS camera located

at the position of the photodiode D1. It can be observed that no features of the test

object are visible in the image.
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Figure 6.7: Intensity image of the spatially inhomogeneous test object with SM4
present, taken with a spatially resolved CMOS camera.

Using the procedures detailed in Sections 4.4 and 4.5, along with the measured

Mueller matrix for SM4 in Equation 6.1, the measured detector intensities for each

input and analysed polarisation state were processed to obtain the spatially resolved

Mueller matrix, which is shown in Figure 6.8.
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6.1 Scattering Phantoms

Figure 6.8: Spatially resolved Mueller matrix for the spatially inhomogeneous test
object with SM4 present. Matrix elements, other than M00, are normalised to their
respective M00 values. The x and y axes for each plot correspond to pixel indices.

The results in Figure 6.8 look similar to those in Figure 6.6 that were taken without

SM4 present. Compared to Figure 6.7, it can be seen that the spatial characteris-

tics of the object have been faithfully reconstructed using single pixel polarimetric

imaging, though some small discrepancies can be observed, such as in the matrix

elements M21 and M31. Nevertheless, keeping in mind the intensity image measured

by a spatially resolved detector in Figure 6.7 which bore no resemblance to the hid-

den test object whatsoever, the similarity of Figures 6.6 and 6.8 demonstrates the

feasibility of the proposed approach.

As was done for the spatially homogeneous test objects, the similarity of the images

in Figures 6.6 and 6.8 was quantified by the element-wise RMSE that was spec-

ified in Equation 6.8. Before comparison, each pixel in both Figures 6.6 and 6.8

was normalised by their respective M00 values, which as explained previously, is

equivalent to removing the effect of intensity variation for a better comparison of

the polarimetric properties. Since the pixels corresponding to the opaque letter R

consisted mainly of noise which was amplified by the normalisation of the Mueller
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matrix, these pixels were identified by setting an empirically determined threshold

of 0.008 to the pixel values in the M00 image of Figure 6.6 and were not included in

the comparison. A mask consisting of the excluded pixels is shown in Figure 6.9.

Figure 6.9: A figure illustrating the pixels excluded from the quantitative comparison,
which are indicated in red.

The element-wise RMSE computed was

RMSEletterR =


0.00 0.06 0.12 0.11

0.06 0.07 0.11 0.15

0.07 0.08 0.10 0.09

0.08 0.10 0.12 0.09

 , (6.11)

with a maximum RMSE value of 0.15. The RMSE values obtained cannot be di-

rectly compared to those computed for the spatially homogeneous objects, because

as described in Chapter 5, possible fluctuations in the input polarisation state imply

that the noise is sample-dependent. Nevertheless, the RMSE values for the spatially

homogeneous and inhomogeneous objects are on the same order of magnitude. Pos-

sible sources of error contributing to the RMSE have been discussed previously in

Section 6.1.2.

6.1.4 Thicker Scattering Media

The results so far have discussed the performance of the proposed technique with the

various test objects hidden behind SM4. The same data acquisition and processing

methods were used to reconstruct images of the same test objects hidden behind
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6.1 Scattering Phantoms

the thicker scattering phantoms, SM5 and SM6. As before, the Mueller matrices of

the scattering media were measured beforehand, to be used for the reconstruction of

the hidden object as described in Section 4.5. The polarimetric properties of these

measured Mueller matrices, as computed from a Lu-Chipman decomposition (see

Section 2.2.7), are plotted in Figure 6.10. Similar to the results of Section 4.6.1, the

scattering phantoms are seen to behave mainly as depolarisers, with the thickest

scattering medium, SM6, having an average depolarisation factor of 0.6.

Figure 6.10: Lu-Chipman parameters of diattenuation (D), polarisance (P),
depolarisation (∆) and retardance in waves (ϕ) for SM4, SM5 and SM6.

Figures 6.11 and 6.12 show the polarimetric images of the spatially inhomogeneous

test object when hidden behind SM5 and SM6 respectively.
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Figure 6.11: Spatially resolved Mueller matrix for the spatially inhomogeneous test
object with SM5 present. Matrix elements, other than M00, are normalised to their
respective M00 values. The x and y axes for each plot correspond to pixel indices.

Figure 6.12: Spatially resolved Mueller matrix for the spatially inhomogeneous test
object with SM6 present. Matrix elements, other than M00, are normalised to their
respective M00 values. The x and y axes for each plot correspond to pixel indices.
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The letter R is still visible in both Figures 6.11 and 6.12, though the images get

visibly noisier with increasing medium thickness. This is to be expected as the inten-

sities detected by the photodiode are inversely related to the medium thickness. As

an example, the detected intensities measured by D1 for SM4, SM5 and SM6, using

the first input polarisation state, were 5.40, 3.12 and 0.80 respectively. As such, the

SNR is expected to degrade with increasing medium thickness, resulting in larger

uncertainties in the Mueller matrix. Nevertheless, the three regions corresponding

to scotch tape, glass and the linear polariser can still be distinguished in Figures

6.11 and 6.12.

Figure 6.13 shows, as a function of medium thickness, the maximum, minimum and

mean element-wise RMSE over all Mueller matrix elements for the test linear po-

lariser, quarter waveplate and inhomogeneous test object. The element-wise RMSE

was computed in the manner described previously for the experiments with SM4. It

should be noted that for the experiments with SM5 and SM6, the orientation angle

of the quarter waveplate was set to 70◦ instead of 40◦. The three plots in Figure

6.13 show a similar increasing trend that is consistent with the degradation of the

polarimetric images observed in Figures 6.11 and 6.12. Nevertheless, Figures 6.11

and 6.12 suggest that the method is feasible at larger thicknesses, though ultimately

limited by the corresponding decrease in SNR.
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(a) Linear polariser (b) Quarter waveplate

(c) Inhomogeneous test object
(i.e. letter R)

Figure 6.13: Plots showing the mean, maximum and minimum of the element-wise
RMSE computed for all test objects as a function of thickness. The lines in each plot is
the mean RMSE computed across all 16 Mueller matrix elements while the error bars

denote the maximum and minimum RMSE values.

6.2 Chicken Breast

Encouraged by the results of Section 6.1, the proposed method was tested further

with a biological scattering medium - a layer of chicken breast tissue.

6.2.1 Spatially Inhomogeneous Object

Measured Mueller Matrix

The thickness of the chicken slice was measured with a vernier caliper, and was found

to be (0.89±0.04)mm, with an increased error margin caused by the compressibility
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6.2 Chicken Breast

of the sample, as well as a spatial variation of the sample thickness as it was diffi-

cult to cut the sample precisely with the utilised meat slicer. Since chicken breast

has a TMFP of 1.25mm and a MFP of 43.7µm (see Section 4.6.2), this thickness

corresponds to 0.72 times of the TMFP and 20.37 times of the MFP. Following the

same procedure as for the scattering phantoms, the measured Mueller matrix of the

chicken breast was

MSM =


1.00 −0.07 0.00 0.00

0.02 −0.01 −0.10 −0.10

0.06 −0.15 0.30 −0.01

0.01 0.06 0.04 −0.03

 . (6.12)

The corresponding polarimetric properties of this matrix, as computed by a Lu-

Chipman decomposition (see Section 2.2.7), were [ϕ,P ,D,∆] = [0.32, 0.06, 0.07, 0.82],

where ϕ has been given in waves. Other than depolarisation, the significant retar-

dance observed is reasonable, since the tissue is composed of aligned fibrous strands,

and is also consistent with results found in literature [209, 210].

Spatially Resolved Mueller Matrix

The spatially inhomogeneous test object, depicted in Figure 4.2, was placed in the

object plane, hidden behind the chicken breast tissue. The same experimental pro-

cedure and data processing methods that were used for the experiments with the

scattering phantoms were used here to reconstruct the polarimetric image of the test

object. Figure 6.14 shows the resulting spatially resolved Mueller matrix.
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Figure 6.14: Spatially resolved Mueller matrix obtained for the spatially
inhomogeneous test object hidden behind a chicken breast layer. Matrix elements, other
than M00, are normalised to their respective M00 values. The x and y axes for each plot

correspond to pixel indices.

Figure 6.14 can be seen to deviate significantly from the reference image in Figure

6.6. The letter R is still visible in the intensity image (i.e. the M00 element), but

a comparison with Figure 6.6 shows that the polarimetric information about the

object was not well recovered. Possible causes of this deviation are discussed later

in this section, after a look at the results obtained with the spatially inhomogeneous

test objects.

6.2.2 Spatially Homogeneous Objects

The experiment was repeated with the test linear polariser, with its transmission

axis oriented at −30◦, placed in the object plane in the setup (see Figure 4.1).

As the sample degrades over time, a fresh slice of chicken breast was cut for this

experiment, and a separate set of measurements for the Mueller matrix and thickness

of the sample was taken.
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Measured Mueller Matrix

The thickness of the chicken breast slice was measured to be (0.74±0.06)mm, which

corresponds to 0.59 times of the TMFP and 16.93 times of the MFP. The measured

Mueller matrix of the chicken breast was

MSM =


1.00 −0.21 −0.03 0.01

−0.16 0.60 −0.01 −0.02

−0.01 −0.01 −0.12 0.06

0.03 −0.07 −0.06 −0.08

 . (6.13)

The corresponding polarimetric parameters obtained from a Lu-Chipman decompo-

sition were [ϕ,P ,D,∆] = [0.42, 0.16, 0.21, 0.72], where ϕ has been given in waves.

Similar to the chicken breast sample used for the spatially inhomogeneous test ob-

ject, other than depolarisation, significant retardance can be observed.

Spatially Resolved Mueller Matrix

The test linear polariser, with its transmission axis oriented at −30◦, was placed in

the object plane, and the chicken breast tissue was located between the polariser

and the PSA. The reconstructed spatially resolved Mueller matrix of the test linear

polariser is shown in Figure 6.15.
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Figure 6.15: Spatially resolved Mueller matrix obtained for a test polariser with its
transmission axis at −30◦ hidden behind a chicken breast layer. Matrix elements, other
than M00, are normalised to their respective M00 values. The x and y axes for each plot

correspond to pixel indices.

Unlike Figure 6.1, the intensity profile of the beam is not visible in the reconstruc-

tion shown in Figure 6.15. The element-wise RMSE (see Equation 6.8) that was

computed by comparing the normalised spatially resolved Mueller matrix to the

same measurements taken of an unobscured linear polariser, was

RMSELP =


0.00 0.43 0.17 0.10

0.20 0.35 0.27 0.12

0.62 0.41 0.51 0.13

0.30 0.17 0.28 0.16

 . (6.14)

It can be seen that the computed RMSE values are much larger than the previous

results presented in Equation 6.9, with a maximum value of 0.62. Given that no

meaningful results were obtained for the inhomogeneous test object and the linear

polariser, the experiment was not repeated for the quarter waveplate. The next

part of this section investigates the possible factors that have led to the anomalous
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results observed.

6.2.3 Discussion

It has been seen that the polarimetric images obtained of the test objects hidden

behind chicken breast samples did not match well to the images taken of the unob-

scured test objects (i.e. Figures 6.14 and 6.15 compared with Figures 6.6 and 6.1).

Comparing the chicken breast samples to the scattering phantoms, it was deduced

that there were two possible reasons behind this mismatch - a temporal variation of

the sample and a significant variation of the polarimetric properties of the chicken

breast samples across pixels. These factors will now be investigated in the rest of

this section.

Spatial variation of scattering sample

The spatial variation in the polarimetric properties of the chicken breast samples

can be seen from the spatially resolved Mueller matrix of the chicken breast samples

without any test objects present, as shown in Figure 6.16. For comparison, the

Mueller matrix for SM4 is shown in Figure 6.17.
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Figure 6.16: Spatially resolved Mueller matrix for the chicken breast layer
corresponding to the scattering medium used to obtain the results in Figure 6.15. Matrix

elements, other than M00, are normalised to their respective M00 values. The x and y
axes for each plot correspond to pixel indices.

Figure 6.17: Spatially resolved Mueller matrix for the scattering phantom SM4
corresponding to the scattering medium used to obtain the results in Figure 6.2. Matrix
elements, other than M00, are normalised to their respective M00 values. The x and y

axes for each plot correspond to pixel indices.
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Though some spatial variation can still seen in the scattering phantoms, the mag-

nitude of the variation is much larger in the chicken breast sample. The spatial

variation in the scattering media samples was quantified by computing the standard

deviation of the polarimetric parameters ϕ, P , D and ∆ across all spatial pixels,

as obtained from a pixel-wise Lu-Chipman decomposition (see Section 2.2.7) of the

spatially resolved Mueller matrices shown in Figures 6.16 and 6.17. The computed

standard deviations are shown in Table 6.2, where it can be seen that the values

computed for the chicken breast sample are much larger than those for SM4.

ϕ P D ∆

Chicken breast 0.839 0.059 0.108 0.125

SM4 0.062 0.053 0.020 0.025

Table 6.2: Standard deviation of the Lu-Chipman parameters across all spatial pixels
for the chicken breast sample and SM4.

Using the same dataset that was used to compute Figure 6.14, the spatially resolved

Mueller matrix of the chicken breast (i.e. Figure 6.16) was used to recover the

polarimetric image of the letter R on a pixel-wise basis via Equation 3.21. If the

degradation in the results was due to the spatial variation of the chicken breast

sample, it is expected that correcting for the Mueller matrix of the chicken breast

on a pixel-wise basis would improve the result. Figure 6.18 shows the reconstructed

Mueller matrix.
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Figure 6.18: Spatially resolved Mueller matrix obtained for the spatially
inhomogeneous test object hidden behind a chicken breast layer, corrected using the
spatially resolved Mueller matrix of the chicken breast. Matrix elements, other than

M00, are normalised to their respective M00 values. The x and y axes correspond to pixel
indices.

No visible improvement from Figure 6.14 was seen in Figure 6.18. The same proce-

dure was conducted on the dataset that was used to compute the spatially resolved

Mueller matrix of the hidden linear polariser in Figure 6.15. Compared to the

reconstructed image of the unobstructed linear polariser, the element-wise RMSE

obtained was 
0.00 0.44 0.15 0.10

0.33 0.35 0.27 0.12

0.76 0.39 0.61 0.13

0.42 0.20 0.37 0.13

 , (6.15)

with a maximum value of 0.76. Since no improvement was observed in both datasets,

this suggests that spatial variation of the sample was not the main factor affecting

the results.
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Temporal variation of scattering sample

The temporal variation of a chicken breast sample was investigated by measuring its

Mueller matrix over a time span of 150 minutes, with one measurement taken every

minute. The acquisition of a 16 × 16 polarimetric image takes 90 minutes, so this

time span is sufficient to investigate the temporal variation during an experiment.

These measurements were done without single pixel imaging (i.e. non-imaging po-

larimetry), with an incident illumination area on the chicken breast sample that is

equal to the size of a Hadamard mask. The results are shown in Figure 6.19.
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Figure 6.19: Mueller matrix of chicken breast measured over 150 minutes. The x axes
describes the time in minutes, while the y axes is the value of the Mueller matrix element.

The matrix element M00, which is directly proportional to the unpolarised transmit-

tance of the sample, increased from an initial value of 0.896 to a final value of 1.245.

This implies that there was close to a 40% increase in the sample transmittance.

Over a typical image acquisition time of 90 minutes, there was an increase in trans-

mittance of 32%. In contrast, a Lu-Chipman decomposition of the Mueller matrices,

which is shown in Figure 6.20, showed no significant change in the polarimetric pa-

rameters over time. A further measurement of air with no chicken breast present

(see Figure 6.21) showed no such increase in value for the M00 element. As such, it
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can be concluded that the increase in transmittance was not caused by any instru-

mental factor, and can be attributed directly to a change in the biological sample.

Similar trends were observed, albeit with a smaller magnitude, when the chicken

breast sample was sandwiched between two glass slides and scotch tape was used

to seal all openings on the mount, which might suggest that sample dehydration

was only one of the causes of this observed variation. As the samples were mounted

vertically, rather than horizontally as on a microscope stage, another possible rea-

son could be a downward diffusion of water or other constituents in chicken breast

due to gravity. Though this was not investigated further, it would be reflected in a

spatial inhomogeneity that could, in principle, be tested.

Figure 6.20: Lu-Chipman parameters of diattenuation (D), polarisance (P),
depolarisation (∆) and retardance in waves (ϕ)) corresponding to the measurements over

chicken breast shown in Figure 6.19.

218



6.2 Chicken Breast

Figure 6.21: Mueller matrix of air measured over 150 minutes. The x axes describes
the time in minutes, while the y axes is the value of the Mueller matrix element.

Regardless of the cause, the observed change in transmittance causes a change in

the intensity measured by the photodiode over time. This is not ideal for single

pixel imaging, whose reconstruction relies on the intensity changes caused by the

projection of different spatial masks on the object. As a consequence, it was not

possible to normalise the data as measured intensity changes could come either from

a change in the sample transmittance or a change in the projected spatial mask. To

illustrate this effect, simulations were conducted to investigate the effect of an in-

tensity change during acquisition on the performance of single pixel polarimetric

imaging.

The spatially resolved intensities at each detector were simulated using Equation

3.20 for each input polarisation state, with the ideal instrument matrices shown in

Equations 4.2 and 4.3. From the computed intensity images, the intensities mea-

sured by the photodiodes for each spatial mask were then calculated using Equation

3.19 for each input and analysed polarisation state. A linear increase in intensity

of 30% across the experiment was assumed, corresponding to the variation in trans-
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mittance of the chicken breast sample observed over the time span of an acquisition.

In the laboratory experiment, the detector intensities were taken sequentially, such

that for each input polarisation state, all spatial masks were projected, while for each

spatial mask, the intensities corresponding to each analysed polarisation state were

sequentially measured. With this sequence in mind, the linear intensity increase was

simulated as

I tot,
′

p = αpI
tot
p , (6.16)

with I totp being the ideal intensity simulated using Equation 3.19 for the input and

analysed polarisation states, as well as spatial mask, corresponding to the pth “mea-

sured” intensity. The multiplicative factor, αp, is computed based on the linear

equation αp = mp + 1, where m = 1.3−1
P

is the gradient computed over the total

number of “measured” intensities, P .

A theoretical linear polariser with its transmission axis at −30◦ was used as the

test object in these simulations. The linear polariser, in such a configuration, has a

Mueller matrix that is given by

MLP,5◦ =


0.50 0.25 −0.43 0.00

0.25 0.13 −0.22 0.00

−0.43 −0.22 0.38 0.00

0.00 0.00 0.00 0.00

 . (6.17)

On the other hand, the Mueller matrix of the scattering medium was taken to be a

depolariser, with its Mueller matrix given by a 4× 4 diagonal matrix with M11, M22

and M33 generated as a random number in the range [−1, 1], resulting in

MSM =


1.00 0.00 0.00 0.00

0.00 0.39 0.00 0.00

0.00 0.00 0.66 0.00

0.00 0.00 0.00 0.17

 . (6.18)

As mentioned above, the structure of this Mueller matrix is typical of an ensemble

of microspheres in the multiple scattering regime [207].
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6.2 Chicken Breast

Using these Mueller matrices, two experiments were simulated - the first with the

scattering medium located in between the linear polariser and the detector and the

second with only the scattering medium present. The spatially resolved Mueller

matrix of the scattering medium, obtained from the second experiment, was used

to compute the image of the linear polariser in the first experiment.

In the first set of simulations, both the test linear polariser and scattering medium

were assumed to be spatially homogeneous. The polarimetric image of the hid-

den linear polariser obtained from the first experiment with a linear increase in

intensity of 30% applied is shown in Figure 6.22. The maximum absolute differ-

ence, computed by a pixel-wise comparison with the groundtruth Mueller matrix

in Equation 6.17, was 0.0754. In comparison, an experiment without any intensity

variation resulted in a maximum absolute difference on the order of 10−11, which

can be attributed to numerical error. As expected, an intensity variation during

the experiment increased the error in the retrieved Mueller matrix. Since the spa-

tially resolved Mueller matrix of the scattering medium was used for correction, it

should be noted that reconstruction errors in the datasets from both experiments

have contributed to this result.
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Chapter 6: Imaging results with a pre-calibrated scattering medium
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Figure 6.22: Spatially resolved Mueller matrix of the test linear polariser hidden
behind a spatially homogeneous scattering medium, obtained using the proposed method
from simulated data with an intensity variation of 30%. The x and y axes correspond to

pixel indices.

The resulting error caused by the intensity increase also depends on the spatial

variation of the scattering medium and/or test object being reconstructed. This

can be seen from the computation of the maximum absolute difference for a single

image reconstruction via single pixel imaging, corresponding to an intensity image

reconstructed for any one input and analysed polarisation state. This can be written,

for an ideal noiseless experiment, as

Maximum absolute difference = max |x̂− ~x| = max
∣∣(Ψ−1TΨ− I

)
~x
∣∣ . (6.19)

Here, ~x is the ideal groundtruth image that would have been obtained without any

temporal intensity variation, x̂ = Ψ−1TΨ is the reconstructed image, and T is

a diagonal matrix with the diagonal elements related to the change in intensity.

For the first experiment, ~x would be the combined spatial variation of both the

scattering medium and the test object, while in the second experiment, ~x would

be the spatial variation of the test object alone. From Equation 6.19, it can be

seen that the error in the reconstruction of the intensity images for each input
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6.2 Chicken Breast

and analysed polarisation state, and consequently the error in the reconstruction

of the spatially resolved Mueller matrix, depends on the variation in ~x. This is

illustrated in the next two sets of simulations. In the second set of simulations,

the test linear polariser was still assumed to be spatially homogeneous, but spatial

variation in the scattering medium was simulated by a random spatial modulation

of intensity between the values of 0 and 1. The results obtained with a linear

variation in intensity of 30% are presented in Figure 6.23. The maximum absolute

difference computed was 0.593, which is much larger than the error obtained with

a spatially homogeneous scattering medium in Figure 6.22. For comparison, the

results obtained without any intensity variation had a maximum absolute difference

on the order of 10−11, which, in addition, proves that a spatial variation in the

scattering medium can be accounted for by correcting for its Mueller matrix on a

pixel-wise basis when no intensity variation is present.
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Figure 6.23: Spatially resolved Mueller matrix of the test linear polariser hidden
behind a spatially inhomogeneous scattering medium, obtained using the proposed
method from simulated data with an intensity variation of 30%. The x and y axes

correspond to pixel indices.

As a final demonstration of the effect of an intensity variation during acquisition, a

third set of simulations was conducted where both the object and scattering medium
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Chapter 6: Imaging results with a pre-calibrated scattering medium

were spatially inhomogeneous. The simulated test object was a linear polariser with

its transmission axis at −30◦, with an ‘opaque’ letter R that spatially modulated

the transmitted intensity. The groundtruth polarimetric image of the test object

is shown in Figure 6.24, while the results obtained with the intensity variation ap-

plied are shown in Figure 6.25. The maximum absolute difference computed was

0.640, which is larger than that computed from the second set of experiments. This

increase in error is to be expected as the combined spatial inhomogeneity of the

scattering medium and the test object has increased. In addition, the letter R was

still visible in the reconstruction, but the polarimetric information can be seen to

be visibly degraded. Qualitatively, this is consistent with the experimental results

that were previously shown in Figure 6.14. The deviation of the reconstruction from

the groundtruth cannot be compared quantitatively to the experimental results be-

cause, as discussed, the error depends on the spatial variation of the test object and

the scattering medium. Furthermore, for simplicity, a linear variation in intensity

was assumed in the simulation but the actual variation in an experiment does not

necessarily follow a linear trend, as evidenced by Figure 6.16. Finally, noise in the

experiment has also not been accounted for. All of these factors would affect the

magnitude of the observed error. Nevertheless, based on this numerical study, it can

be concluded that the intensity variation across the experiment is the most likely

cause of the difference between the reconstructed polarimetric images obtained with

the chicken breast samples and the images obtained without the samples present. A

summary of the simulation results is provided in Table 6.3.
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Figure 6.24: Groundtruth spatially resolved Mueller matrix of the test letter R. The x
and y axes correspond to pixel indices.
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Figure 6.25: Spatially resolved Mueller matrix of the test letter R hidden behind a
spatially inhomogeneous scattering medium, obtained using the proposed method from

simulated data with an intensity variation of 30%. The x and y axes correspond to pixel
indices.
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Sets Experiments Spatially homogeneous? Conclusion(s)

Set 1
Scattering

medium
3 • Intensity variation during the experiment increases the error in

the reconstructed image.
Test object 3

Set 2
Scattering

medium
7

• Spatial variation in the scattering medium and/or object affects

the magnitude of the error in the reconstructed image.

Test object 3

• The contribution of a spatially varying scattering medium can be

accounted for by correcting for its Mueller matrix on a pixel-wise

basis.

Set 3
Scattering

medium
7 • Qualitative illustration of the degradation in the reconstructed

polarimetric image.
Test object 7

Table 6.3: Summary of the simulations that have investigated the effect of an increase in sample transmittance during data acquisition
in single pixel polarimetric imaging.
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6.3 Summary

6.3 Summary

In summary, the proposed method of single pixel polarimetric imaging has been

successfully demonstrated on SM4, a scattering phantom with a thickness that is

18.57 times of the MFP and 0.85 times of the TMFP. The technique was further

tested with thicker scattering media, with thicknesses up to a 43.13 times of the

MFP or 1.97 of the TMFP. Promising results were achieved, but it was observed

that noise in the reconstructed polarimetric images increased with the thickness

of the scattering media, which is reasonable since the intensity measured by the

photodiodes decreases correspondingly. As mentioned in Section 6.1, the average

depolarisation factor for the thickest scattering phantom tested was 0.60. Thus,

this suggests that polarisation information will persist for even larger thicknesses

and that the proposed method can continue to be applied to even thicker samples,

as long as there is sufficient SNR. Unfortunately, the polarimetric images of the same

test objects hidden behind a layer of chicken breast did not yield favourable results.

Through a numerical study, this was shown to be caused by a temporal variation in

the unpolarised transmittance of the object during the experiment. Possible future

work to circumvent this issue will be discussed in the next and final chapter of this

thesis.
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Chapter 7

Conclusion

This work has aimed to find a means of polarimetric imaging through scattering me-

dia. After a consideration of the existing literature, single pixel polarimetric imaging

was identified as a promising approach, as it is a potentially cost-effective solution

that could be adapted to include other imaging functionalities, and does not require

any pre-calibration of the scattering medium. As such, the feasibility of single pixel

polarimetric imaging was further examined in this project.

A theoretical model for single pixel polarimetric imaging was proposed and studied

using 2D coupled line dipole simulations. The imaging configuration considered was

a test object that was coherently illuminated by a spatially modulated incident field

and hidden behind a statistically homogeneous scattering medium, with the trans-

mitted intensity collected by single pixel detectors in a PSA. With this setup, it was

found that single pixel polarimetric imaging is possible under three conditions. The

first condition is that the size of each pixel in the utilised spatial mask is larger than

the minimum distance between two input points on the scattering medium which

produce uncorrelated output speckle. The second condition is that the collection

optics has a sufficiently large NA to ensure adequate sampling of the spatial modes

in the transmitted speckle. Thirdly, the illumination optics has to be well designed,

so that there is minimal spatial overlap between the pixels at the input plane of the

scattering medium. These requirements are needed to ensure that the correlation

between the output speckle from different pixels is small, so that the photodiode’s
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measured signal can be considered as an incoherent sum of the contributions from

each pixel. When these requirements are satisfied, single pixel polarimetric imaging

through a scattering medium is possible, with the presence of the scattering medium

corrected for through the use of its Mueller matrix.

A practical consideration for single pixel polarimetric imaging is whether the same

correction for the presence of the scattering medium can be applied to all pixels. If

the same correction can be applied, only one instance of the scattering medium’s

Mueller matrix has to be measured, which reduces the amount of pre-calibration

that is required. Again using the 2D coupled line dipole simulations, it was shown

that for a statistically homogeneous scattering medium and a sufficiently large in-

put pixel size, the Mueller matrix measured for each input pixel is an estimate of

an ensemble averaged Mueller matrix. Consequently, the measured Mueller matrix

becomes independent of the instance of disorder (i.e. the detailed scattering con-

figuration) and is the same for each input pixel. The minimum pixel size required

depends on two length scales. The first length scale is the minimum distance be-

tween input points that give rise to uncorrelated output speckle at any given output

point, while the second length scale is the size of the diffuse spot which arises from

a point source located at the input face of the scattering medium.

Based on the findings from the numerical studies conducted, a single pixel polari-

metric system made up of economical off-the-shelf components was designed, built

and calibrated. When imaging through scattering media, scattering causes light to

be scattered outside of the collection NA, such that the amount of light collected by

the detector decreases with the thickness of the scattering medium. As such, in con-

sideration of the system’s signal to noise ratio, lock-in detection was implemented

in the setup to amplify the weak transmitted signals above the noise floor. Fur-

thermore, a constrained least squares algorithm was utilised to compute the Mueller

matrix from the obtained measurements, in order to ensure that the Mueller matrix

was physically realisable, even in the presence of noise. In contrast, it was found that

a previously proposed algorithm based on the maximum likelihood estimate did not

work well for the setup used in this work, possibly because the employed PSA config-
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uration conducts a biased sampling of polarisation states across the Poincarè sphere.

The noise characteristics of the constructed system were studied to estimate its po-

larimetric resolution, which is defined as the smallest change in the Mueller matrix

elements which can be reliably detected. Intensity noise was theoretically propa-

gated through the setup, resulting in an estimate of the corresponding standard de-

viation in the elements of the Mueller matrix. For single pixel polarimetric imaging,

the maximum standard deviation predicted was 0.003. When single pixel imaging

was not used (i.e. non-imaging polarimetry), the maximum standard deviation was

0.002. These standard deviations are equivalent to the polarimetric resolution ex-

pected in each of these imaging modes. Yet, when compared to the variation of

the Mueller matrix for air obtained from non-imaging polarimetric experiments, it

was found that the experimentally determined standard deviation was much higher

than the predicted value, with a maximum value of 0.007. Further investigation

suggested the presence of a common mode noise that was unaccounted for, which

probably originated from fluctuations in the polarisation states produced by the

VWPs. Nonetheless, the measurements of the standard deviation over air provided

an estimate of the expected polarimetric resolution of the system.

The experimental system was then used to demonstrate single pixel polarimetric

imaging through scattering media, based on the theoretical model proposed. Past

1 TMFP, the direction of the photons exiting the scattering media is fully ran-

domised. Using the proposed method, however, polarimetric imaging of various test

objects was demonstrated through scattering phantoms with thicknesses that were

0.85, 1.12 and 1.97 times of the TMFP, thereby establishing the feasibility of the

proposed method.

The second set of scattering media tested were slices of chicken breast. Using the

proposed method, it was found that reconstructed images of test objects hidden be-

hind the chicken breast samples did not match well to the images obtained when the

test objects were unobscured. Two causes of this mismatch were identified. Firstly,

unlike the scattering phantoms, the chicken breast samples showed a high degree of

230



spatial inhomogeneity. As such, the use of the same correction for all pixels would

result in an error in the resulting image. Secondly, the intensity transmittance of the

chicken breast samples increased over the acquisition time of the experiment. This

increase was unaccounted for in the data processing and adversely affected the accu-

racy of the images produced by the single pixel camera. The origin of this variation

remains unclear and needs further investigation, but possible explanations could be

dehydration of the sample, or a downward diffusion of water or other constituents

in the vertically mounted sample. The spatial inhomogeneity of the sample could

be resolved by correcting for the influence of the scattering medium on a pixel-wise

basis. To deal with the temporal variation of the sample would require system

adjustments to reduce the acquisition time, and potentially to mount the sample

horizontally in a sealed container.

Apart from minimising the temporal variation of the sample, a reduction in the

acquisition time is also necessary in order for the proposed method to be a practical

imaging technique. This is particularly so if one wishes to increase the number of

image pixels. The current acquisition time of about 90 minutes per acquisition of a

16 × 16 polarimetric image is limited mainly by the measures taken to deal with a

low detected signal, such as the implementation of lock-in detection. As the lock-in

amplifier used only had a single input, sequential readout of the detector signals

was required, which increased the acquisition time and also admittedly, nullified

one of the main benefits of using a division of amplitude PSA - the ability to take

synchronous readings across the analysed polarisation states. Multichannel lock-in

amplifiers are one option for speeding up the acquisition. By simply being able to

take the measurements at the same time decreases the acquisition time by a factor

of four. The acquisition time could also be decreased by improving the signal level

or mitigating the noise sources in the measurements, since less temporal averaging

would then be required to achieve the same SNR. In this respect, more sensitive

detectors could be used, such as avalanche photodiodes, which provide a high gain

due to the avalanche effect caused by the operation of the photodiode at a high

reverse voltage. In addition, it was observed that the VWPs were a likely source

of noise in the measurements. The use of VWPs with higher stability would hence
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be beneficial in decreasing the amount of noise in the system. Finally, other than

these changes that could be made to the system, compressive sensing could also be

employed to decrease the acquisition time, by reducing the number of measurements

required for image reconstruction. The reduction in number of measurements can

be as much as ten-fold, but depends on the sparsity of the object in the sparsifying

basis chosen as well as the incoherence of the measurement and sparsifying bases

utilised.

Acquisition time aside, another practical concern that has yet to be addressed in the

current work is the prior measurement of the scattering medium’s Mueller matrix,

which is still currently required for single pixel polarimetric imaging. Such a pre-

calibration of the scattering medium without any test object present is not usually

possible in practice and is hence an obstacle for the proposed method. A possible

means of dealing with this issue could be to measure the Mueller matrix of the scat-

tering medium at different thicknesses, so as to try and identify a trend that could

be used to predict the Mueller matrix at any arbitrary thickness. For a sufficiently

large pixel size, the measured Mueller matrix is independent of the instance of dis-

order, and is, therefore, not specific to any particular sample of the same scattering

medium. This solution would not be useful, however, for real samples, which tend

to demonstrate spatial inhomogeneity, such as the chicken breast tissue tested in

this work. A further improvement to this solution could be to develop algorithms

that are able to adaptively adjust the Mueller matrix of the scattering medium for

each pixel, with the predicted Mueller matrix for a known thickness used as prior

information.

An additional consideration that should be looked at in the future is the challenge

of delivering the spatially modulated illumination to the object. In this work, access

to one end of the object has been assumed, but in practice, it is more likely that the

objects of interest are embedded within scattering media such that there is no access

to any part of the object. Potential solutions include the adaptation of multi-photon

excitation techniques, be it wide field illumination [115] or point sampling [22, 23],

which can both deliver light up to a certain depth. Various spatial patterns, such
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as the Hadamard patterns used in this work, can be implemented with wide field

illumination. With point scanning, images are formed by raster scanning, which can

also be thought of as single pixel imaging under a point basis. In both cases, unlike

the model considered in this work, the illumination light from the sample plane,

emitted by multi-photon fluorescence, is incoherent.

Though the work so far has assumed coherent illumination, there is little restriction

to the use of incoherent light for single pixel polarimetric imaging. In fact, the use

of spatially incoherent light could relax some of the constraints that have been dis-

cussed. For example, in order to consider the signal measured by each photodiode

as an incoherent sum of the contributions from each pixel, there were constraints

on the minimum pixel size and NA of the system. If, however, spatially incoher-

ent light were used, then the contributions from each input pixel would naturally

add incoherently. An additional assumption made in this work was that absorption

in the scattering medium is negligible. This is a reasonable assumption for most

biological tissue, where scattering tends to dominate over absorption [8]. Never-

theless, in the case of polarisation-insensitive absorption, the primary effect is a

decrease in the SNR of the measurements due to the added light attenuation by

absorption, such that the maximum thickness, beyond which the measured signal

becomes indistinguishable from noise, is also reduced. If the scattering medium

exhibits polarisation-sensitive absorption (i.e. diattenuation), this would affect the

depolarisation lengths of the various polarisation states differently and could also

imply a different SNR for the retrieval of different polarimetric parameters of the

object. As such, the presence of absorption does not change the conclusions of this

work, and only affects the length scales at which the proposed technique can be

applied.

In summary, this work has demonstrated, for the first time, that single pixel po-

larimetric imaging is possible in the presence of a scattering medium. Polarimetric

information of the hidden test object is seen to persist, even at length scales where

ballistic light has been effectively extinguished, thereby making it possible to con-

duct polarimetric imaging through scattering. Experimentally, images of hidden
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objects were recovered through scattering phantoms with thicknesses up to 1.97

times of the TMFP. Factors limiting the performance of the proposed method in

the presence of scattering media have also been thoroughly studied with theoretical

formulations and numerical simulations. Aside from these investigations, a novel

constrained least squares algorithm was also proposed for polarimetric setups, en-

abling the recovery of a physical Mueller matrix even in the presence of noise. The

conclusions in this work are not limited to single pixel imaging, but could also be ex-

tended to other imaging techniques, such as raster scanning techniques. It is hoped

that the outcomes of this work would be instrumental for the future development of

practical polarimetric imaging methods through scattering media.
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