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ABSTRACT
In this work we present a method for generating random matri-
ces describing electromagnetic scattering from disordered media
containing dielectric particles with prescribed single particle scatter-
ing characteristics. Resulting scattering matrices automatically sat-
isfy the physical constraints of unitarity, reciprocity and time rever-
sal, whilst also incorporating the polarization properties of electro-
magnetic waves and scattering anisotropy. Our technique therefore
enables statistical study of a variety of polarization phenomena,
including depolarization rates and polarization-dependent scatter-
ing by chiral particles. In this vein, we perform numerical simula-
tions for media containing isotropic and chiral spherical particles of
different sizes for thicknesses ranging from the single to multiple
scattering regime and discuss our results, drawing comparisons to
established theory.
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1. Introduction

Complex, disordered media are ubiquitous in nature, from cosmic dust in the inter-
stellar medium to tissue in the brain [1,2]. When light interacts with such media, mul-
tiple scattering can cause severe deterioration of the spatio-temporal structure of the
incident field through randomization of amplitude, phase and polarization state. Multi-
ple scattering therefore can heavily degrade optical information [3,4] posing significant
challenges in many scientific disciplines, including telecommunications, remote sensing,
astronomy, medical diagnostics and optical imaging [5–9]. A detailed understanding of
the transport of light in complex systems is paramount to overcoming limitations imposed
by multiple scattering, therefore necessitating development of accurate modelling
tools.

Theoretically modeling multiple scattering of polarized light is notoriously difficult.
While in principle the scattered field follows exactly from solving Maxwell’s equations,
numerous approximations are generally required to render themathematics tractable [10].
Numerical solutions of scattering problems are possible for systems of limited size, typi-
cally with dimensions on the order of tenwavelengths, using, for example, finite-difference
methods, the volume integral equation, the T matrix method and the discrete dipole
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approximation [11–14]. Infinite, plane parallel random media have also been widely stud-
ied, often using Fourier methods in which the fields are expressed as angular spectra of
planewaves [15–18].With thesemethods, statistical properties of randomscattering canbe
studied by computing the scattered field for a series of different randomly generated real-
izationsof the scatteringmedium.Apopular alternative approach formodeling low-density
scatteringmedia is the radiative transfer equation (and its vectorial counterpart), whichpre-
dicts the specific intensity (Stokes vector) at a far fieldmeasurementpoint [19]. The radiative
transfer equations are frequently solved numerically using Monte Carlo approaches that
trace rays, thought of as ‘photons’, through the scatteringmedium [20–22]. Thesemethods
makeuseof apriori information about the single scatteringproperties of themedium’s con-
stituent particles, such as the phase function or far-field amplitude scattering matrix. One
drawback of the Monte Carlo technique is speed; while much faster than more rigorous
methods, a large amount of computation is required to estimate statistical quantities with
high accuracy. Simulationsmust also be repeatedwhen photons are injectedwith different
angles of incidence or polarization state. In addition, traditional Monte Carlo methods are
unable to reproduce correlations such as thememory effect, althoughmore recent studies
have begun to address this problem [23,24].

Scattering matrices, and the closely related transmission, reflection and transfer matri-
ces, provide an alternative description of a scattering medium [25]. In practice, the scatter-
ingmatrix (or other relatedmatrices) canbedetermined through sequentialmeasurements
using a spatial light modulator to control the different degrees of freedom of an electric
field [26–30]. Once known, the scattering matrix determines the response of a medium
to an arbitrary incident field and enables the design of incident wavefronts that, rather
than being distorted by multiple scattering, are tightly focused or strongly transmitted
well beyond the ballistic regime [31–33]. In addition, when viewed statistically, correla-
tions between different matrix elements embody phenomena such as the optical mem-
ory effect [34–37] or transmission-reflection correlations, which have been exploited for
imaging [38–40].

For random media, the scattering matrix can be treated as a random matrix sampled
from some suitable matrix ensemble. The matrix ensemble is a probability distribution
applied to a set of scattering matrices that describe different microscopic configurations
of a system, subject to certain constraints. For example, it is well known that for a non-
absorbing system, physically admissible scattering matrices are constrained to be unitary,
with an additional matrix symmetry imposed when reciprocity or time reversal symmetry
holds [41,42]. One attraction of the random matrix approach is the ability to forgo solving
microscopic scattering problems, provided that the appropriate probability distribution is
known. The earliest random matrix models for the scattering matrix, namely the circular
ensembles, use a uniform distribution over the unitary group [43]. A more sophisticated
randommatrixmodel is captured in theDMPKequation,whichdescribes the statistical evo-
lution of the singular values of the transmissionmatrix [44,45]. While sufficient for revealing
universal properties of disorderedmedia, such as the existence of highly transmitting open
eigenchannels [44], these models are largely limited to purely isotropic scattering media
and contain no adjustable parameters for exploring themultitude of phenomena exhibited
by real systems. Moreover, existing randommatrix models only consider scalar waves and
are thus unsuitable for vectorial light. Generalizations of theDMPKequation havebeenpro-
posed, but are typically expressed in terms of correlations between the singular values and
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vectors of the transmission and reflections matrices, which are difficult to relate to those of
the raw scatteringmatrix elements [46–48]. Non-isotropic Monte Carlo transfer matrix sim-
ulations for disordered waveguides have been performed, but to our knowledge have yet
to incorporate polarization effects, which are particularly important for optical scattering
[49]. In this work we address these limitations by presenting amethod for numerically gen-
erating optical scatteringmatrices for randommedia of arbitrary thicknesses, incorporating
the polarization properties of light. Ourmethod requires the prescription of the single scat-
tering properties of the particles that constitute the random medium and uses a matrix
cascade approach to simulate the multiple scattering regime. We consider sparse distri-
butions of randomly positioned particles such that each scatterer is in the far field of all
other scatterers. Arbitrary fields are expressed using a discrete angular spectrum of plane
waves, which facilitates the description of non-planar wavefronts and allows the theory to
be expressed in terms of the scattering of planewaves, for which the literature is abundant.
In comparison to the discussed rigorous methods, our approach is approximate in nature
and aims to uncover polarization statistics in multiple scattering media using a relatively
simple probabilistic model.

The content of this paper is organized as follows. In Section 2, we cover the background
theory relevant to the model. We begin in Section 2.1 by defining the scattering matrix
and deriving expressions for its elements in the single scattering regime. In Section 2.2, we
detail the statistical properties of the scatteringmatrix and derive expressions for themean,
covariance matrix and pseudo-covariance matrix associated with the scattering matrix
elements. The issue of enforcing necessary matrix symmetries on randomly generated
matrices is briefly discussed in Section 2.3. We present numerical simulations of random
media consisting of dielectric spheres in Section 3. Specifically, our method is explained in
Section 3.1, with results presented in Section 3.2. In particular, we present statistical data for
the transmission eigenvalues as well as the scattered intensity, DoP, retardance and diat-
tenuation for different outgoing plane wave directions. For all of our results, we discuss
their physical interpretations, drawing comparisons to established theory. We end with a
summary and conclusion of our work.

2. Theory

In this section we give a comprehensive description of the theoretical model used in our
simulations. We begin by setting out the problemwewish to study and derive expressions
for the scattering matrix elements in the single scattering regime. We then discuss the sta-
tistical properties of the scattering matrix elements, which can be related to the properties
of the individual scatterers in the medium. Finally, we discuss how the matrix symmetries
imposed by energy conservation and reciprocity are enforced.

2.1. The scatteringmatrix

Consider a slab of thickness�L, bounded by the planes z = −�L/2 and z = �L/2 and infi-
nite in transverse extent. Suppose that the slab contains N dielectric particles distributed
sparsely enough so that each particle is in the far field (defined rigorously below) of all
the others. We assume that the boundaries of the slab are non-reflective so that scatter-
ing only occurs due to the presence of the particles within the slab. Suppose that the slab is
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illuminated by a right-propagating plane wave (‘right’ henceforth meaning in the positive
z direction) with wavevector ki = (kix , kiy , kiz)T (T denoting the transpose operator) where
kiz > 0, |ki| = k = 2π/λ andλ is thewavelength. The complex representationof theelectric
field associated with the incident wave at position r is given by

Ei(r) = E0 eiki·r =
∫

δ(κ − κ i)E0 ei(κ ·ρ+kzz)dkxdky , (1)

where κ = (kx , ky)T and ρ = (x, y)T are the transverse wavevector and transverse position
vector, kz = (k2 − k2x − k2y )

1/2 and δ is the Dirac delta function. The vector E0 is constant
and characterizes the polarization state of the incident wave.

Suppose now that the slab thickness �L is sufficiently small so that the total scattered
field can be assumed to be composed of only single scattering contributions from each
particle. If the centre of the p’th particle is located at position rp, its single scattering
contribution to the total field Ep in the far field (i.e. k|r − rp| � 1) is given by

Ep(r) = eik|r−rp|

ik|r − rp|Ap(�r,ui)E0 eiki·rp , (2)

where �r = (r − rp)/|r − rp| and ui = ki/k are unit vectors [50]. The 3 × 3 matrix
Ap(�r,ui), which depends on the shape, size, orientation andmorphology of the scatterer,
describes the transformationof thepolarization state of the incident field to that of the scat-
tered field in the far field observation direction�r. Equation (2) admits an angular spectrum
representation, which is given by

Ep(r) =
∫

Ap(u,ui) ei(ki−k)·rp

2πkkz
E0 ei(κ ·ρ+kzz)dkxdky , (3)

where now r = (ρ, z)T, k = (κ , kz)T and u = k/k [51]. Since r lies in far field of the scat-
terer, the domain of integration in Equation (3) is restricted to the set of all wavevectors
for which |κ | < k, i.e. homogeneous plane waves. Considering now the total electric field
on the planar boundaries of the scattering medium, we find the expressions

E(ρ,�L/2) =
∫ ⎡⎣δ(κ − κ i)I3 +

N∑
p=1

At
p(κ , κ i)

2πkkz
ei(ki−k)·rp

⎤⎦ E0 ei(κ ·ρ+kz�L/2)dkxdky , (4)

E(ρ,−�L/2) =
∫ N∑

p=1

Ar
p(κ , κ i)

2πkkz
ei(ki−k̃)·rpE0 ei(κ ·ρ−kz(−�L/2))dkxdky

+ E0 ei(κ i·ρ+kiz(−�L/2)), (5)

where In is the n × n identity matrix and we have defined At
p(κ , κ i) = Ap(u,ui) and

Ar
p(κ , κ i) = Ap(̃u,ui). We use a tilde to denote a wavevector with negative z component,

i.e. if u = (ux , uy , uz)T with uz = (|u|2 − u2x − u2y)
1/2 > 0, then ũ = (ux , uy ,−uz)T. Assuming

that the planar boundaries also lie in the far field of every particle within the scattering
medium, evanescent wave contributions to the integrals in Equations (4) and (5) can also
be neglected.

In Equations (4) and (5), the matrices At
p and Ar

p are continuous functions of the trans-
verse wavevector. In reality, however, it is only possible to simulate the scattered field up to
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someminimal resolution.Wehence construct discrete counterparts to Equations (4) and (5)
by replacing the integrals with sums over a finite set of wavevectors. We define the set
K = {−κNk , . . . ,−κ2,−κ1, 0, κ1, κ2, . . . , κNk }, which consists of Nk transverse wavevectors
(henceforth referred to as ‘modes’) together with their additive inverses and the two com-
ponent zero vector 0 = (0, 0)T, which corresponds to the wavevector (0, 0, k)T. For each
mode κ i ∈ K , we also define an associated weight wi, where

∑
i wi = πk2, so that for any

function f we have the cubature scheme∫
f (κ)dkxdky ≈

∑
i

f (κ i)wi. (6)

Naturally, increasing the number of modes improves the accuracy of Equation (6), albeit at
the expense of an increase in computation. Many different choices of modes and weights
may be possible in principle, and the optimal choice of cubature scheme may depend
non-trivially on the forms ofAt

p andAr
p. In this work, we usedmodes distributed on a Carte-

sian grid in k space, each having an equal weight given by wi = w = πk2/(2Nk + 1) for
all i. Finally, we note that it is necessary to choose modes in inverse pairs to fully exploit
scattering reciprocity [42].

Given a cubature scheme defined as above, Equations (4) and (5) can be discretized to

E(ρ,�L/2) =
Nk∑

j=−Nk

t(κ j, κ i)E0 ei(κ j·ρ+kjz�L/2)w, (7)

E(ρ,−�L/2) = E0 ei(κ i·ρ−kiz�L/2) +
Nk∑

j=−Nk

r(κ j, κ i)E0 ei(κ j·ρ+kjz�L/2)w, (8)

where

t(κ j, κ i) = δij

w
I3 + 1

2πkkjz

N∑
p=1

At
p(κ j, κ i) ei(ki−kj)·rp , (9)

r(κ j, κ i) = 1
2πkkjz

N∑
p=1

Ar
p(κ j, κ i) ei(ki−k̃j)·rp (10)

are transmission and reflection matrices. Note that we have replaced the differential prod-
uct dkxdky with w and the delta function δ(κ − κ i) with the normalized Kronecker delta
δij/w. For the transverse wavevectors, we use integer subscripts where negative values
correspond to modes listed in K with a negative sign, e.g. κ−1 = −κ1, and κ0 = 0.

As there are no sources in the planes z = −�L/2 and z = �L/2, it follows from the
Maxwell equation ∇ · E = 0 that only four of the nine elements of the transmission and
reflectionmatrices are independent [10]. Thesematricesmay therefore be reduced to 2 × 2
matrices, which is facilitated by introducing the standard spherical polar coordinates basis
vectors

ek(κ , kz) = k
k
, eφ(κ , kz) = ẑ × ek

|ẑ × ek|
, eθ (κ , kz) = eφ × ek

|eφ × ek|
. (11)
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For the special cases ek = ±ẑ, we set eφ = ±ŷ. We define the reduced 2 × 2 transmission
and reflection matrices to be t(j,i) and r(j,i) whose elements are defined by

t(j,i)mn = eTm(κ j, kjz)t(κ j, κ i)en(κ i, kiz), (12)

r(j,i)mn = eTm(κ j,−kjz)r(κ j, κ i)en(κ i, kiz), (13)

wherem and n stand for either θ or φ. Finally, for mathematical convenience (see Ref. [42]
for more details), we normalize the transmission and reflection matrices to t̄(j,i) and r̄(j,i),
which are given by

t̄(j,i) =
√
kjz
kiz

t(j,i)w = δijI2 + Cji

N∑
p=1

At
p(j,i) e

i(ki−kj)·rp , (14)

r̄(j,i) =
√
kjz
kiz

r(j,i)w = Cji

N∑
p=1

Ar
p(j,i) e

i(ki−k̃j)·rp , (15)

where Cji = w/(2πk
√
kjzkiz) and At

p(j,i) and Ar
p(j,i) are defined analogously to t(j,i) and r(j,i).

The indices i and j, which label the matrices t̄(j,i) and r̄(j,i), span from −Nk to Nk , mean-
ing there are a total of (2Nk + 1)2 transmission and reflection matrices. We may form an
overall transmission and reflection matrix by concatenating 2 × 2 blocks t̄(j,i) and r̄(j,i) for
all pairs of incoming and outgoing modes taken from the set K. Specifically, we define t̄
(and r̄ analogously) to be the block matrix

t̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t̄(−Nk ,−Nk) · · · t̄(−Nk ,−1) t̄(−Nk ,0) t̄(−Nk ,1) · · · t̄(−Nk ,Nk)

...
. . .

...
...

...
. . .

...
t̄(−1,−Nk) · · · t̄(−1,−1) t̄(−1,0) t̄(−1,1) · · · t̄(−1,Nk)

t̄(0,−Nk) · · · t̄(0,−1) t̄(0,0) t̄(0,1) · · · t̄(0,Nk)

t̄(1,−Nk) · · · t̄(1,−1) t̄(1,0) t̄(1,1) · · · t̄(1,Nk)

...
. . .

...
...

...
. . .

...
t̄(Nk ,−Nk) · · · t̄(Nk ,−1) t̄(Nk ,0) t̄(Nk ,1) · · · t̄(Nk ,Nk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

The block t̄(3,−2), for example, describes transmission through themedium frommode−κ2

to mode κ3, i.e. from the incident right-propagating plane wave with wavevector k−2 =
(−k2x ,−k2y , k2z)T to that with wavevector k3 = (k3x , k3y , k3z)T. It is important to remember
that in reflection each outgoing plane wave component propagates to the left and has a
wavevector with a negative z component. The corresponding block of the reflectionmatrix
r̄(3,−2) therefore describes the scattering from the same incident planewave component to
the left-propagating plane wave with wavevector k̃3 = (k3x , k3y ,−k3z)T.

Analogous expressions to those presented thus far can be derived for a left-propagating
plane wave incident upon the right side of the scattering medium, yielding an additional
pair of transmission and reflection matrices t̄′ and r̄′. Together, the matrices t̄, r̄, t̄′ and r̄′
form the normalized scattering matrix S̄, which is given by

S̄ =
(
r̄ t̄′
t̄ r̄′

)
. (17)
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Put simply, the scatteringmatrix fully describes howwaves incident upon themedium scat-
ter intomodes that propagate away from themedium, up to the resolution afforded by the
mode discretization.

2.2. Statistics of the scatteringmatrix elements

The expressions we have derived for the scattering matrix elements in Equations (14)
and (15) are deterministic: if the locations and properties of all the scatterers are known,
then in principle one can calculate the elements of S̄. In practice, however, the precise loca-
tions of every scatterer within the slab may be unknown and may vary considerably from
one complex medium to another. It is therefore useful to think of S̄ as a random matrix.
Observing Equations (14) and (15), we see that the ‘randomness’ arises from two physical
sources: the positions of the scatterers, which contribute to the complex exponential terms,
and the morphological properties of the scatterers, i.e. shape, size, orientation etc., which
contribute to the matrix factors At

p and Ar
p.

Observing Equations (14) and (15), with the exception of the diagonal elements of the
transmissionmatrix (i = j), for which the argument of the complex exponential is always 0,
the expressions for the transmission and reflection matrix elements are essentially random
phasor sums. Under rather general conditions, such expressions are known to be asymptot-
icallyGaussian randomvariables asN → ∞ [52]. For this tohold,we require the assumption
that a scatterer’smorphology is statistically independent of its position, whichwe shall take
to be the case. We may therefore reasonably suppose that each of the matrix elements is
marginally Gaussian distributed. It does not automatically follow that the the elements of
S̄ follow a multivariate Gaussian distribution, but we shall nevertheless assume that this is
the case. The statistics of a complexmultivariateGaussiandistribution are fully describedby
three parameters: themean, covariancematrix and pseudo-covariancematrix, expressions
for which we shall now derive [53].

Starting from Equation (14), we see that the mean value of t̄(j,i) is given by

〈t̄(j,i)〉 = δijI2 + NCji〈At
(j,i)〉〈 ei(ki−kj)·r〉, (18)

where we have used the independence of scatterer position and morphology. We have
also assumed that each particle’s At

p matrix is identically distributed, which allows us to
drop the p subscript. In order to compute the 〈exp[i(ki − kj) · r]〉 term, it is first necessary to
specify a probability distribution function for the particle position r. We suppose that the
particles are distributeduniformly in the slab so that the single particle distribution function
is given by p(r) = 1/V , where V is the volume of the slab (momentarily taken to be finite).
This assumption is reasonable given that each particle is in the far field of the others [54].
Since the slab is infinite in transverse extent, both N and V are in fact infinite. We assume,
however, that the particle density n = N/V is finite and take the limit N, V → ∞, holding n
constant. Therefore, we have

N〈 ei(ki−kj)·r〉 → n
∫ �L/2

−�L/2

∫ ∞

−∞

∫ ∞

−∞
ei(ki−kj)·rdxdydz

= (2π)2n�Lsinc
(

(kiz − kjz)
�L

2

)
δ(kix − kjx)δ(kiy − kjy), (19)
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where sinc(x) = sin(x)/x. Replacing the delta functions in Equation (19) with normal-
ized Kronecker delta symbols [δ(kix − kjx)δ(kiy − kjy) → δij/w], Equation (18) ultimately
becomes

〈t̄(j,i)〉 = δij

(
I2 + 2πn�L

kkiz
〈At

(j,i)〉
)
. (20)

It is evident from Equation (20) that the mean values of the transmission matrix elements
are only non-zero for blocks lying on the diagonal of t̄, which describe forward scattering.
Themean values of the reflectionmatrix elements can be calculated similarly. Starting from
Equation (15), we arrive at the analogous result

〈r̄(j,i)〉 = δij
2πn�L

kkiz
sinc

(
kiz�L

)
〈Ar

(j,i)〉. (21)

These values are also only non-zero for blocks lying on the diagonal of r̄. These blocks cor-
respond to reflections of plane waves whose wavevectors transform according to k → k̃,
i.e. scattering in the ‘specular reflection’ direction. The sinc function in Equation (21) is due
to the randomness in the z positions of the particles, which imparts a random phase onto
each singly scattered component of the total field [55].

Computing the covariances of the scattering matrix elements requires finding correla-
tions of the form 〈t̄(j,i)bat̄∗(v,u)dc〉, where i, j, u and v refer to transverse wavevectors (taken
from K) and a, b, c and d refer to polarization states (θ or φ). Assuming for simplicity that we
are not considering diagonal blocks of t̄ (i.e. i �= j, u �= v), we have

〈t̄(j,i)bat̄∗(v,u)dc〉 = CjiCvu

N∑
p,q=1

〈Atp(j,i)baAt∗q(v,u)dc〉〈 ei[(ki−kj)·rp−(ku−kv)·rq]〉. (22)

The sum in Equation (22) can be separated into two types of terms: those for which p = q
and those for which p �= q. Assuming that the particles in themedium are statistically inde-
pendent in all senses, the terms forwhich p �= qdecouple and, in the limitN → ∞, the right
hand side of Equation (22) reduces to the product 〈t̄(j,i)ba〉〈t̄∗(v,u)dc〉. In handling the terms for
which p = q, the average of the complex exponential can be dealt with as in Equation (19).
Setting η = ki − kj − ku + kv , we find

N〈 eiη·r〉 = (2π)2n�Lsinc
(

ηz
�L

2

)
δ(ηx)δ(ηy). (23)

The right hand side of Equation (23) is non-zero when ηx = ηy = 0, i.e.

kix − kjx = kux − kvx , kiy − kjy = kuy − kvy . (24)

This condition is precisely that of the memory effect, which manifests here as a correla-
tion between certain pairs of transmission matrix blocks [54]. Incorporating this result into
Equation (22), we find that

〈t̄(j,i)bat̄∗(v,u)dc〉 − 〈t̄(j,i)ba〉〈t̄∗(v,u)dc〉

= δRCijuv〈At(j,i)baAt∗(v,u)dc〉sinc
(

�L

2
(kiz − kjz − kuz + kvz)

)
, (25)
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where Cijuv = wn�L/(k2
√
kizkjzkuzkvz) and δR = 1 when Equation (24) is satisfied and

0 otherwise. The superscript R here stands for ‘regular’ correlations (to be con-
trasted with ‘pseudo’ correlations shortly). An analogous result holds for 〈r̄(j,i)bar̄∗(v,u)dc〉 −
〈r̄(j,i)ba〉〈r̄∗(v,u)dc〉, which can be found in Appendix 1.

Calculating the correlation in Equation (25) requires knowledge of the scattered field
due to a single particle, which is described by the elements of the matrices At

p and Ar
p. It is

worth noting, however, that these correlations can be equivalently described by ensemble
averaged Mueller matrices for the slab. Transformations between Mueller matrix elements
and field correlations arewell documented in the literature (see for example Ref. [56]).While
both formalisms are informationally equivalent, reformulating the theory presented here in
terms of Mueller matrices may be preferable in some circumstances. For example, decom-
positions of the Mueller matrix are well known and allow one to express a Mueller matrix
in terms of simpler matrices that correspond to familiar optical elements, such as a diat-
tenuator, retarder and depolarizer [57]. For the purpose of modelling a randommedium, it
may be simpler to begin with a custom Mueller matrix with desired scattering characteris-
tics, which can then be translated into the corresponding field correlations. Moreover, the
Mueller matrix is relatively easy to determine experimentally as it can be calculated from
intensity measurements, without requiring interferometric techniques. In cases where the
formof aMuellermatrix is known,but analytic expressions forAt

p andA
r
p arenot, theMueller

matrix still allows for the extraction of covariances that can used in numerical simulations.
In addition to regular correlations as in Equation (22), it is also necessary to consider

‘pseudo’ correlations, i.e. correlations of the form 〈t̄(j,i)bat̄(v,u)dc〉 without complex conju-
gation of the second term. These can be calculated in a similar manner to the regular
correlations, yielding the pseudo-covariance

〈t̄(j,i)bat̄(v,u)dc〉 − 〈t̄(j,i)ba〉〈t̄(v,u)dc〉

= δPCijuv〈At(j,i)baAt(v,u)dc〉sinc
(

�L

2
(kiz − kjz + kuz − kvz)

)
, (26)

where δP = 1 when

kix − kjx = −(kux − kvx), kiy − kjy = −(kuy − kvy). (27)

and 0 otherwise. It is worth nothing that pseudo-correlations do not influence the statis-
tics of any individual, non-diagonal 2 × 2 block within the transmission matrix, which can
be seen by noting that δP = 0 for i = u and j = v (i �= j). Given that non-diagonal blocks
also have 0 mean, it follows that every element within a non-diagonal block of the trans-
mission matrix is a circularly symmetric complex random variable. The joint statistics of
all of the elements of the transmission matrix, however, do not obey circular symmetry,
owing to the presence of pairs of modes for which δP �= 0. For example, consider the pair
of blocks t̄(j,i) and t̄(i,j), which are related by swapping the incident and outgoing plane
wave directions. Referring to Equation (14), the complex exponential terms for these blocks
are given by exp[i(ki − kj) · rp] and exp[i(kj − ki) · rp] = exp[−i(ki − kj) · rp] respectively.
Thus, regardless of the distribution of the particles within the medium, the complex expo-
nential terms associated with t̄(i,j) are always the complex conjugates of those associated
with t̄(j,i). This manifests as a non-zero pseudo-correlation between the elements of the
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matrices t̄(j,i) and t̄(i,j), for which it is simple to show that δP = 1. Analogously, pseudo-
covariances can be found for the other blocks of the scatteringmatrix, a summary of which
is given in Appendix 1.

Finally, we note that correlations (both regular and pseudo) between elements of dif-
ferent blocks of the scattering matrix, e.g. 〈t̄(j,i)bar̄∗(v,u)dc〉, can be computed in an identical
fashion to those presented. For simplicity, however, we neglect these so that each of
the blocks of the scattering matrix, now assumed to be uncorrelated, can be generated
independently. The effects of these additional correlations will be investigated in future
works.

2.3. Matrix symmetries and randommatrix generation

In addition to the correlations discussed in the previous section, additional relationships
exist between the elements of the scattering matrix due to fundamental physical laws.
Provided that there is no absorption or gain within the slab and that the scattering
medium satisfies the reciprocity principle, the scattering matrix is constrained to be uni-
tary (S̄†S̄ = I) and to possess certain lines of symmetries about which some of its elements
are equal [42]. These constraints must be satisfied in order for the scattering matrix to
represent a physically admissible scattering medium. In order to generate a random scat-
tering matrix that automatically satisfies these symmetry constraints, it is first necessary
to identity a set of independent parameters that fully capture the degrees of freedom of
the matrix. Once these parameters have been determined, the matrix elements can be
uniquely determined from the constraints. Importantly, the set of independent parame-
ters must be chosen so that their statistics can be related to the physical properties of
the scattering medium. While it is straightforward to accommodate the reciprocity con-
straint, unitarity, which manifests as a large system of quadratic equations, is far less
trivial to satisfy. A common strategy employed in theoretical studies is the generalized
polar decomposition, which parametrizes the scattering matrix in terms of the singular
values and vectors of its transmission and reflection matrix blocks [44]. The connection
between these parameters and the raw elements of the scatteringmatrix, however, is non-
trivial and unintuitive. Furthermore, the singular vectors still comprise unitary matrices,
and thus the problem of how to randomly sample a unitary matrix with given statistics
remains.

Instead of directly generating a random unitary matrix, an alternative strategy is to
first generate a non-unitary scattering matrix S̄′ with desired statistical properties and
to then find a unitary matrix S̄ that closely approximates S̄′. Naturally, the resulting uni-
tary matrix S̄ from this procedure will not possess the same statistical properties as those
prescribed for S̄′. Provided that the matrix S̄ is sufficiently ‘close’ to S̄′ (in the sense that
‖S̄′ − S̄‖ is small for some choice of matrix norm), however, this issue becomes unim-
portant. Given any arbitrary matrix S̄′, it is well known that the closest unitary approxi-
mation S̄ of S̄′ is given by the unitary matrix that appears in the polar decomposition of
S̄′ [58].

Using the results of Section 2.2, t̄, r̄ and r̄′ can be generated using a multivariate Gaus-
sian distribution. For diagonal blocks of t̄, as there is no phase variation in Equation (14),
the matrix elements are non-random and we can instead use the result for the mean trans-
mission matrix in Equation (20) as a fixed, non-random value. If reciprocity holds, it is
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unnecessary to generate t̄′ as it can always be calculated from t̄ (see Ref. [42]). Further-
more, reciprocity of r̄ and r̄′ is automatically enforced by a subset of the correlations in
Section 2.2. Given t̄, r̄, t̄′ and r̄′, which form the non-unitary scattering matrix S̄′, we then
take the unitary part of the polar decomposition of S̄′ to arrive at a unitary scatteringmatrix
S̄. Note that in light of, for example, Equation (25), the squaredmagnitudes of the elements
of S̄′ are proportional to the thickness �L. In the limit �L → 0, it is clear that t̄, t̄′ → I and
r̄, r̄′ → O. Theunitary approximation S̄also improves in accuracy as�Ldecreases, satisfying
lim�L→0 ‖S̄′ − S̄‖ = 0.

Given the assumption of single scattering, we may only directly generate scattering
matrices for thin slabs. Matrices for slabs of arbitrary thickness, however, can be found by
cascadingmany independent realizations of thin slabs. This is easily achieved using transfer
matrices, which possess the useful property that the transfermatrix for a system composed
of two contiguous slabs is given by the correctly-ordered product of the transfer matrices
of the individual slabs [44]. Scattering matrices can also be cascaded, but the calculation is
more complex (see Appendix 2). An additional complication however is that the statistical
results in Section 2.2 assume that the slab is centred at z = 0. This led to the emergence
of the sinc factors in the expressions for the covariances and pseudo-covariances associ-
ated with the matrix elements. If instead the slab were centred at an arbitrary position
z = L0, these factors would be different. By performing a change of coordinates, we find
that

S̄L0 = 	
L0± S̄0	L0± , M̄L0 = 	

L0∓ M̄0	
L0± , (28)

where S̄0 and S̄L0 are scattering matrices for the same physical medium, but located with
centers at z = 0 and L0 respectively. Thematrices M̄0 and M̄L0 are the corresponding trans-
fer matrices. The matrices 	

L0± and 	
L0∓ are diagonal matrices containing complex phasor

terms, more details of which can be found in Appendix C. Thus, in order to generate a
random matrix describing a scattering medium centred at z = L0, we can first generate
S̄0, whose statistics are given by the results of Section 2.2, and then compute S̄L0 using
Equation (28).

Consider now the special case of a series of slabs, all of equal thickness �L, positioned
contiguously in the z direction so as to constitute a single, continuousmedium. In this case,
in order to find the scattering or transfermatrix for the overallmedium, it can be shown that
it is sufficient to take the product of transfer matrices of the form M̄ = 	�L± M̄0, where M̄0

can be randomly generated using the statistics in Section 2.2 and the method outlined in
this section. Taking the product of NM such transfer matrices yields a transfer matrix for
a scattering medium of thickness NM�L. More details can be found in Appendix 3. We
note that since we have assumed the scatterers are sparsely distributed, near field cou-
pling between particles within the medium is negligible. Accordingly, it is not necessary
to include evanescent wave components in the transfer matrices for individual thin slabs,
even if some particles happen to lie close to the slab boundaries. Evanescent waves, fur-
thermore, do not contribute to the transmitted and reflected far fields that are ultimately
of interest in this work. Finally, if necessary, scattering at the boundaries of the slab can
also be incorporated into the matrix cascade by including additional scattering or transfer
matrices that capture the surface effects at either interface.
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3. Numerical simulations

In this section we discuss numerical simulations of scattering matrices, performed for ran-
dom media containing different types of particles. We first outline our simulation method
and then present some results with discussion.

3.1. Method

Before generating random scatteringmatrices, it is first necessary to choose a set K of trans-
verse wavevectors and associated weights. Since we need only consider homogeneous
plane waves, the set of all possible transverse wavevectors in k-space is the interior of
the circle |κ |2 = k2x + k2y = k2. In a real scattering experiment, the number of independent
modes can be extremely large, on the order ofmillions per squaremillimetre of illuminated
surface area [33]. In our simulations, however, there is a practical upper limit to the num-
ber of modes that can be used, as large scattering matrices quickly become unwieldy and
computationally intensive. We distributed modes on a Cartesian grid in k space, including
the origin and with lattice spacing given by �kx = �ky = 0.1715k, rejecting modes lying
on lattice points for which k2x + k2y > k2. This spacing was chosen arbitrarily so that the set
K contains a total of 101modes, which, given the block structure of S̄, means our scattering
matrices were of size 404 × 404. Of course, as the boundary of k space is a circle, the inte-
rior cannot be fully tessellated by a Cartesian grid and modes close to the boundary have
associated weights not given by the product �kx�ky . To ensure that the weight for each
mode was equal and that the weights were correctly normalized, we decided to give each
mode the weight w = πk2/101. This value differs slightly to �kx�ky , but this discrepancy
decreases as the number of modes increases.

We simulated two types of scattering media: one containing spherical, optically inac-
tive particles and one containing chiral particles exhibiting circular birefringence. In either
case, the single particle scattering properties are known theoretically (see, for example,

Ref. [50]). It was convenient to specify the matrix At/r/r′
(j,i) as a product of rotation matrices

and a 2 × 2 scattering matrix defined with respect to the scattering plane. Details of this
calculation can be found in Appendix 4. We chose the wavelength λ = 500 nm and con-
sidered isotropic spheres of three different sizes, namely x = 1, 2 and 4, where x = ka is
the dimensionless size parameter and a is the particle radius. For each particle size, we

used the same relative refractive index m = 1.2 and calculated the At/r/r′
(j,i) factors using

Mie theory. In addition, we performed simulations for chiral spheres of two different size
parameters, x = 1 and 4. For both size parameters, we chose a mean relative refractive
index m̄ = 1.2 and circular birefringence 2�m = 0.088 so that ml = m̄ + �m and mr =
m̄ − �mwere the relative refractive indices experienced by incident left and right handed
circular polarization respectively. This birefringence is such that left handed circularly
polarized light is more strongly forward scattered than right handed circularly polarized
light.

For a given type of particle, the volume density n and slab thickness �L that appear in
the expressions for themean and covariances in Section 2.2 are free parameters, not imme-
diately constrained by any other variables. It is important, however, that these parameters
are chosen in a way that does not violate any of the basic assumptions made in our model.
To ensure that thiswas the case,we identified three conditions thatmust be simultaneously
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satisfied. Firstly, we require kd � 1, where d = (1/n)1/3 is a measure of the average spac-
ing between the particles in themedium. This condition ensures that the particles are all in
the far field of each other. Secondly, we require l/�L � 1, where l is the mean free path of
medium, given by the standard formula l = (nσ)−1, where σ is the scattering cross section
[50]. This condition ensures that the single scattering approximation holds. Since this sec-
ond condition requires that the slab thickness �L is small, we identified a third condition
�L/2a > 1 that ensures that the slab is thick enough to contain the particles.

Instead of specifying n directly, it was simpler to start with a particle volume fraction
φ and calculate the density via n = φ/Vp, where Vp is the volume of a single particle. For
all simulations we chose the value φ = 0.01. In specifying �L, a problem we encountered
was that, given the appearance of 1/kiz factors in, for example, Equation (20), the numer-
ical values of the means and covariances can become large for grazing incidence modes.
In effect, these modes ‘see’ a larger thickness for the scattering medium. To overcome this
problem, we set a threshold value δ � 1 and demanded that the elements of the mean
transmission matrix were smaller than δ for all incident modes (i.e. all blocks on the diago-
nal of t̄). Specifically, for all i, we solved the equation δ = 2πn�Lsmax,i/(kkiz) for �L, where
smax,i is the largest singular value of 〈At

(i,i)〉 and took �L to be the minimum of all these
values. We found that using a threshold value δ = 0.1 gave values of �L that satisfied our
conditions. A summary of all the simulation parameters is given in Table 1, where each row
corresponds to a different parameter set. For chiral particles, the presentedmean free path
is that calculated fromMie theory for an isotropic sphere with the same size parameter.

For each parameter set we generated the matrices t̄, r̄ and r̄′ using a multivariate
Gaussian distribution, calculating t̄′ from t̄ as previously discussed. For each matrix S̄′ we
computed the unitary approximation S̄ as described in Section 2.3 and its associated trans-
fermatrix M̄. To properly account for propagation along the z axis when cascadingmultiple
slabs, we then pre-multiplied each of these transfer matrices by the constant matrix 	�L± .
In total, we randomly generated pools of 104 transfer matrices for each parameter set for
slabs with thicknesses as shown in Table 1.

In order to access the multiple scattering regime, it is necessary to cascade at least
∼ l/�L transfer matrices, which, as can be seen, can be on the order of 102 matrices. Addi-
tionally, in order to compute good statistics, it is necessary to have a large number of
scattering matrices at any given thickness. Consequently, in total, a large number of ran-
dom matrices are required to generate data for random media with thicknesses beyond a
mean free path. To alleviate this computational burden, we first decided upon a thickness
step size (0.5l in our simulations) and calculated a secondary pool of 104 transfer matri-
ces by cascading random selections of transfer matrices from the initial matrix pool so that

Table 1. Summary of the physical parameters used in simulations.

Input Calculated Parameters Physical Checks

x m �m n/μm−3 �L/μm l/μm a/nm d/μm kd �L/2a l/�L

1 1.2 0 4.737 1.177 311.57 79.58 0.595 7.48 7.34 264.7
2 1.2 0 0.592 1.126 88.08 159.15 1.191 14.96 3.53 78.2
4 1.2 0 0.074 1.173 35.87 318.31 2.382 29.93 1.84 30.6
1 1.2 0.044 4.737 0.969 311.57 79.58 0.595 7.48 6.09 321.7
4 1.2 0.044 0.074 0.969 35.87 318.31 2.382 29.93 1.52 37.0
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each resulting transfer matrix corresponded to a randommedium of thickness equal to the
step size. In generating this secondary pool, some matrices from the initial matrix pool are
reused, which may introduce unwanted statistical correlations between members of the
secondary pool. Given that the number of possible permutations in performing the matrix
products is far greater than any realistic size for the secondary pool, however, we found
this issue to be unimportant. Finally, we used an additional set of 104 transfer matrices for
actual data collection. For this final set of transfer matrices, we progressed through media
of increasing thicknesses in steps of 0.5l to a final thickness of 30l, collecting data at each
step. Progressing to the next thickness is performed bymultiplying eachmatrix in our final
collection with a randomly selected matrix from the secondary pool. Therefore, after the
secondary pool has been generated, no further randommatrices are required.

When continuing to multiplying transfer matrices together, the elements tend to
diverge, as the set of transfermatrices is not a compact group [49]. Therefore, after a certain
point, it is necessary to convert all matrices used in the calculations into their correspond-
ing scatteringmatrices. While slower to cascade, unitarity of the scatteringmatrices means
they do not suffer from the same numerical problem.

3.2. Model validation

In the following section we present a variety of statistical data calculated from our simula-
tions for thicknesses L ranging from the single to multiple scattering regimes. As we have
access to the entire scattering matrix, in addition to analyzing more familiar characteristics
of the scattered field in individual modes, such as the intensity and DoP, we may also cal-
culate parameters that are functions of larger sections of S̄, such as correlations between
different blocks or the transmission eigenvalues. In all of the following data, averages were
computed over all 104 realizations of the scattering matrix for each thickness.

3.2.1. Isotropic spheres
The following results are for optically inactive spheres whose parameters are given in the
first three rows of Table 1.

3.2.1.1. Transmission eigenvalues. Figure 1(a) shows themean transmission eigenvalue
〈τ 〉 = 〈tr(t̄†t̄)〉/(4Nk + 2), where tr denotes the trace operator. When all incident light is
transmitted, regardless of incident mode or polarization state, 〈τ 〉 = 1, whereas 〈τ 〉 = 0
when no light is transmitted. By conservation of energy, a decrease in 〈τ 〉must be compen-
sated for by an increase in themean reflection eigenvalue 〈ρ〉 = 1 − 〈τ 〉 = 〈tr(r̄†r̄)〉/(4Nk +
2). The main characteristics of Figure 1 are that 〈τ 〉 decreases monotonically with increas-
ing medium thickness, as is known to occur for isotropic systems [25], and that the rate
of decrease is smaller for larger size parameters. The dependence on particle size can be
explainedby single particle scattering anisotropy: larger particles preferentially scatter light
in the forward direction, which results in a smaller decay rate for 〈τ 〉. In Ref. [59], it was
found that in a quasi-one dimensional system with isotropic scattering, to lowest order,
the mean transmission eigenvalue decays as 〈τ 〉 = (1 + L/l)−1. We found that our curves
were reasonably well fit by functions of the form 〈τ 〉 = (1 + L/αl)−1, where α is a fitting
parameter given by 4.02, 13.25 and 37.51 for x = 1, 2 and 4 respectively. Physically, αl can
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Figure 1. (a) Mean transmission as a function of thickness for size parameters x = 1, 2 and 4. Fitting
curves are of the form 〈τ 〉 = (1 + L/αl)−1, where α was calculated from the data points. (b) Probability
density functions of transmission eigenvalues for thicknesses L/l = 1, 5 and 30 for size parameter x = 2.

be interpreted as a length scale over which the randommedium scatters isotropically, sim-
ilar to the transport mean free path l∗ = l/(1 − g), where g is the anisotropy factor [60].
We found however that our value for α was larger than 1/(1 − g). To explain this, we note
that the expression 1/(1 − g) only accounts for randomization of direction, whereas α also
incorporates isotropization of polarization state.

Figure 1(b) shows the probability density function for the transmission eigenvalues of
scattering matrices at thicknesses L/l = 1, 5 and 30 for size parameter x = 2. The distribu-
tion transitions frombeing highly peaked at τ = 1 for small thicknesses to highly peaked at
τ = 0 for large thicknesses. Notably, even for the largest thickness L/l = 30, there still exist
channels for which τ = 1. These open eigenchannels are well known and have been stud-
ied extensively, both theoretically and experimentally, particularly for scalar waves [25,33].
In our simulations however, these eigenchannels also have a specific polarization structure.
In order to construct such an eigenchannel experimentally, such as in a wavefront shaping
experiment, it would benecessary to control the relative ampltidue, phase andpolarization
state of each plane wave component of the incident field. Considering the eigenchannel
with largest transmission, we found that altering the polarization state of any individual
plane wave component while keeping its relative intensity constant resulted in a decrease
of the total transmitted intensity. Careful control of the incident polarization state may
therefore lead to enhanced transmission over the case of scalar waves. We found similar
behaviour for x = 1 and 4, but the rate at which the distribution evolves with thickness is
greater for x = 1 and smaller for x = 4, as expected due to scattering anisotropy.

3.2.1.2. Scattered intensity. Figures 2(a,b) show the mean plane wave intensity 〈I〉 in
several outgoing modes for a normally incident plane wave and size parameters x = 1
and 2. We focused our attention on four different modes: the transmitted wave parallel
to the incident field (forward transmission, or FT); the transmitted wave for which κ/k ≈
(3�kx , 0)T (oblique transmission, or OT); the reflected wave for which κ/k = (3�kx , 0)T

(oblique backscattering, or OB) and the backscattered wave propagating in the opposite
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Figure 2. Mean intensity as a function of thickness for size parameters (a) x = 1 and (b) x = 2. The
intensity is shown in four different outgoing modes: forward transmission (FT), oblique transmission
(OT), oblique backscattering (OB) and direct backscattering (DB). A visual aid is provided in (a).

direction to the incident field (direct backscattering, or DB). For each mode, 〈I〉 was calcu-
lated by taking the ensemble average vector norm of the first column of the appropriate
matrix block.

Observing FT in Figure 2(a), we see that 〈I〉 decays exponentially, but the decay rate
changes at around L/l ∼ 10, becoming smaller for large thicknesses. The initial exponen-
tial decay is the well-known Beer-Lambert law, which is given by 〈I〉 = e−L/l and is shown
in the figure as a black line. For larger thicknesses, the change in decay rate occurs due
to light being scattered back into the forward direction (i.e. an increase in the ‘incoherent’
intensity). Thenotablebend in thedecay curve can thereforebe thought of as a transition to
the multiple scattering regime. Before this transition occurs, our data points are systemati-
cally larger than those predicted by the Beer Lambert law, which we attribute to numerical
inaccuracies stemming from our simplistic cubature scheme.

Looking at OT in Figure 2(a), for small thicknesses we see that the intensity is small and
increases with thickness. In this regime, scattering is weak and intensity increases as more
light is scattered away from FT and into OT. For large thicknesses, the intensity behaviour is
similar to FT, settling on a limiting decay trajectory. The behaviour in reflection is conjugate
to that of transmission. In OB, the intensity is initially small, but increases monotonically.
The same behaviour is observed in DB, but the intensity values are ∼ 1.8 times larger.
This intensity enhancement is a signature of the coherent backscattering effect, which
emerges naturally from our simulations from the enforcement of reciprocity in the scatter-
ingmatrices. This enhancement is less than ideal (a factor of 2) due to thenon-zero size each
mode occupies in k-space. Figure 2(b) shows similar trends to Figure 2(a). Themost notable
differences are that the reflected intensities increase at slower rates and the transmitted
intensities decay at a slower rate, both of which are also a result of scattering anisotropy.

3.2.1.3. Degreeofpolarization. In Figure 3, we show theDoP in the same fourmodes dis-
cussed in Section 3.2.1.2 for both a linearly and circularly polarized, normally incident plane
wave. The DoP can be found by calculating the ensemble average Mueller matrix for each
mode, from which the average scattered Stokes vector for different incident polarization
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Figure 3. Degreeof polarization as a functionof thickness for incident linearly (×markers) and circularly
(◦markers) polarized light and size parameters x = 1 (blue), 2 (orange) and4 (green) in (a) forward trans-
mission (FT), (b) oblique transmission (OT), (c) oblique backscattering (OB) and (d) direct backscattering
(DB).

states, and thus the DoP, can be deduced. We emphasize that for any individual realiza-
tion of a scattering medium the scattered field is fully polarized. The DoP in this context is
therefore ameasure of the distribution of scattered polarization states across the ensemble
of randommedia.

Figure 3(a) shows the DoP versus thickness in FT. As is evident from the graph, the DoP
decays more slowly for larger particles, regardless of the incident polarization state. Fur-
thermore, for x = 1, we see that linear polarization better preserves its DoP over greater
thicknesses than circular polarization, but the opposite is true for x = 2 and 4. This phe-
nomenon, sometimes called the polarizationmemory effect, is well understood and can be
explained by scattering anisotropy [60,61]. A similar trend can be observed in Figure 3(b),
which shows the DoP in OT. The most notable difference is that, particularly for x = 1, the
DoPbegins todecay immediately, asopposed toat L/l ∼ 5 for FT. This is due to thepresence
of the incident field in FT and absence thereof in OT.
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The behaviour of the DoP in OB, as shown in Figure 3(c) is much more interesting. The
most obvious feature is that the DoP retains a residual, non-zero value as L/l → ∞ for all
particle sizes and polarization states. This residual DoP can be explained by noting that in
reflection, unlike transmission, a significant contribution to the total field comes from low-
order scattering sequences that occur close to the medium’s surface [62]. Another striking
feature is the non-monotonicity of the DoP for circular polarization and size parameters
x = 2, 4 (and the absence of such behaviour for x = 1). Specifically, the DoP can be seen to
dip to aminimumvalue before increasing again and settling on a limiting value. This occurs
at L/l ∼ 0.5 for x = 2 and at L/l ∼ 6.5 for x = 4. There is also a non-trivial dependence
between the limiting DoP value, size parameter and incident polarization state.

To explain someof these phenomena, we note that, roughly speaking, the reflected field
is the sum of three types of contributions: low scattering order contributions from scatter-
ing sequences occurring close to the medium’s surface (type I); polarization-randomizing,
high order scattering contributions from long, circuitous sequences deep within the
medium (type II) and polarization-maintaining, high order scattering contributions from
long, largely forward-directed sequences deep within the medium (type III). As type I
contributions occur near the slab boundary, their overallmagnitude should be largely inde-
pendent of thickness. The latter two contributions, however, should increase inmagnitude
with thickness.

For x = 1, since large angle scattering is more probable than for x = 2 or 4, type I
contributions dominate the total backscattered field for all thicknesses. TheDoP decays rel-
atively slowly as type II contributions, which give a polarization-randomizing background,
gradually increase with thickness. As scattering is relatively isotropic, type III contributions
are comparatively weak and thus less relevant. To verify this claim, we observed distribu-
tions of scattered polarization states over the Poincaré sphere for different thicknesses. We
found that for all thicknesses, these distributions remained concentrated at the polariza-
tion state that would result from a single backscattering event, with an increasing isotropic
background for larger thicknesses.

The situation is different for x = 2 and 4. Since larger particles scatter more strongly in
the forward direction, type I contributions, which require large angle scattering events, are
comparatively much weaker. For incident linearly polarized light, type I and III contribu-
tions both tend to preserve the incident polarization state. Although type I contributions
are weaker for x = 4 than x = 2, type III contributions are greater for x = 4 than x = 2.
There is thus a non-trivial relationship between the relative magnitudes of these contribu-
tions as particle size changes, the exact balance of which dictates the non-monotonicity of
the limiting value of the DoP for linear polarization.

For x = 2 and 4, the situation is again different for incident circularly polarized light.
While type III contributionsmaintain incident helicity, type I contributions result in a helicity
flip. Therefore, in transitioning from small to large thicknesses, the distribution of scattered
states on the Poincaré sphere must transition from being highly focused at the helicity
flipped pole (a single scattering, type I dominant regime) to being relatively isotropic, but
concentrated at the pole with the same helicity as the incident field (a multiple scattering,
type III dominant regime). Although both of these extremes correspond to relatively large
values for the DoP, in performing this transition, there is an intermediate thickness at which
the distribution of scattered states on the Poincaré sphere shows no preference for either
pole, in which case the DoP is small. It is precisely this thickness that corresponds to the
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dips in the DoP. The dip is more obvious for x = 4 than x = 2 and occurs at a larger thick-
ness because photons are able to penetrate further into themedium for x = 4 before their
directions are randomized. This behaviour has been observed experimentally in oblique
backscattering from suspensions of polystyrene spheres [63].

As a final remark, we note that in Figure 3(d), which shows similar trends to Figure 3(c),
the DoP tends to values close to 1/3 for x = 2 and 4. This is the value predicted for scat-
tering matrices drawn from the circular orthogonal ensemble in the direct backscattering
direction [64]. For x = 1, the dominance of type I contributions to the reflected fieldmeans
that the phase function of the slab better resembles that of the individual particles in
the medium, which is not isotropic. This may explain why the DoP for x = 1 deviates
strongly from this value, particularly for incident circularly polarized light. The assumption
of isotropic scattering, which is necessary for the circular ensemble to be an appropriate
model, is better satisfied at large thicknesses for x = 2 and 4, whose scattered fields are
dominated by multiply scattered light.

3.2.1.4. Diattenuationand retardance. Anadditional pair of parameters that canbeuse-
ful in assessing the polarimetric properties of a scattering medium are diattenuation and
retardance. As we have access to the full scattering matrix, these can computed for any
2 × 2 block using the polar decomposition [56]. Unlike the DoP, which is dependent on
the incident polarization state, diattenuation and retardance are computed from the entire
2 × 2 block.We note that, as the scatteringmatrix is unitary, the diattenuationwe compute
is solely due to scattering and not absorption (dichroism).

Figure 4(a) shows a heat map of probability density functions for diattenuation D in FT
at different thicknesses for x = 1. The values of the color bar are dimensionless and rep-
resent probability density. The color bar values are accurate for thicknesses beyond 10l,
but are saturated for shorter thicknesses in a small region close to the origin as outlined
by the dashed contour. In this region, D is strongly peaked close to 0, as a weakly scatter-
ing medium, which largely preserves the incident field, cannot be strongly diattenuating.
In Figure 4(b), density functions for a selection of thicknesses as indicated by the horizon-
tal dashed lines in Figure 4(a) are shown more clearly. As can be seen, the diattenuation
density function transitions from being a delta function p(D) = δ(D) at L = 0 to a limit-
ing distribution given by p(D) = 3D2 as L → ∞. This limiting distribution is precisely that
predicted by a random 2 × 2 matrix of uncorrelated, complex Gaussian entries [64]. The
transition of the diattenuation distribution is therefore related to the decorrelation of the
elements of the scattering matrix. Figures 4(c,d) show analogous data for retardance in FT.
Qualitatively, the behaviour is similar to diattenuation and the density function makes a
similar transition from p(R) = δ(R) to the limiting distribution p(R) = 2 sin2(R/2)/π , which
is also that predicted by a random Gaussian matrix. For small thicknesses, we found that
the distributions of the diattenuation and retardance vectors were concentrated at polar-
ization states expected from single scattering theory. These distributions however became
isotropic over the Poincaré sphere for large thicknesses, meaning that no particular polar-
ization state is preferentially scattered on average in the large thickness limit. For individual
medium realizations, however, as diattenuation tends to be quite large (〈D〉 = 0.75), there
will exist random polarization states that are transmitted much more strongly than others.

Figure 5 shows a similar set of plots to those of Figure 4, but for particle size x = 4 and
for DB. The main differences between Figures 4 and 5 are the behaviour of retardance, the
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Figure 4. Diattenuation and retardance histograms for size parameter x = 1 in forward transmission
(FT). (a) shows a heatmap of probability distribution functions for diattenuation at different thicknesses.
The dashed contour close to the origin indicates a region in which the colors are saturated and the
probability density is greater than 3. (b) shows a selection of histograms corresponding to horizontal
cross-sections of data in (a). (c) and (d) show analogous data for retardance, with the dashed contour in
(c) showing a region for which the probability density is greater than 1.

rates of evolution of the density functions and the limiting probability density functions.
As shown in Figures 5(a,b), owing to the absence of the incident field, the diattenuation
distribution tends to a limiting distribution (this time given by p(D) = 2D) at a shorter thick-
ness. In Figure 5(c), for small thicknesses, the retardance is peaked close to R = π , which is
the value expected by single particle backscattering. The retardance distribution evolves
to p(R) = sin(R/2)/2 at larger thicknesses, as can be seen in Figure 5(d). The fact that these
limiting densities differ to those in Figure 4 is another peculiarity of theDB direction. Due to
reciprocity, additional correlations exist between the elements of the 2 × 2 block, even in
the large thickness limit. The previous results relevant to a matrix of uncorrelated Gaussian
entries therefore no longer apply. It has been shown, however, that these limiting densities
are in fact those predicted for diagonal blocks of a randommatrix sampled from the circular
orthogonal ensemble [64].

3.2.2. Chiral spheres
The following results are for chiral spheres, whose parameter sets are given in the
final two rows of Table 1. For these particles, since the mean free path depends on
the incident polarization state, to better illustrate the polarization dependence of the
statistics of the scattered field we decided to normalize the medium thickness L by
the mean free path calculated for an optically inactive sphere with the same size
parameter.
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Figure 5. As per Figure 4, albeit for scatterers with size parameter x = 4 and direct backscattering (DB).
Dashed contours in (a) and (c) demarcate regions forwhich the heatmaphas been clipped for probability
densities≥ 2 and≥ 1 respectively.

3.2.2.1. Transmission and reflection. Figures 6(a,b) show the mean scattered intensity
for chiral spheres with size parameter x = 4 for incident left handed circularly polarized
light (LHC) and right handed circularly polarized light (RHC) respectively. While the overall
trends closely resemble those in Figure 2, there is now a clear polarization dependence. As
was the case with the isotropic spheres, much of the behaviour can be explained through

Figure 6. Mean intensity as a function of thickness for size parameter x = 4 and incident (a) left and (b)
right circular polarization. The intensity is shown in four different outgoingmodes: forward transmission
(FT), oblique transmission (OT), oblique backscattering (OB) and direct backscattering (DB). A visual aid
is provided in (a).
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consideration of scattering anisotropy. LHC, which is more preferentially forward scattered
than RHC, decays slower in FT. For RHC, the mean intensity is correspondingly larger in the
backscattering directions. Similar behaviour was seen for size parameter x = 1.

3.2.2.2. Degree of polarization. The DoP statistics for chiral spheres of size parameters
x = 1 and 4 (indicated by downward and upward pointing triangles respectively) are
shown in Figure 7. We have included three different incident polarization states: LHC, RHC
and LIN, the last of which refers to incident linearly polarized light. The trends we see are
similar to those for isotropic spheres in Figure 3, but with a few interesting differences.
In Figure 7(a), a dip in the DoP can now be seen in FT for RHC and x = 1. For isotropic
spheres, these dips in the DoP were only present in reflection for larger spheres. We can
explain this phenomenon however by invoking a similar argument to before. For RHC and
a thinmedium, the distribution of scattered polarization states on the Poincaré sphere was
sharply peaked at the pole corresponding to RHC. For large thicknesses, however, we found

Figure 7. DoP as a function of thickness for incident linearly polarized light (LIN), left handed circularly
polarized light (LHC) and right handed circularly polarized light (RHC) for size parameters x = 1 (�mark-
ers) and 4 (� markers) in outgoing modes (a) forward transmission (FT), (b) oblique transmission (OT),
(c) oblique backscattering (OB) and (d) direct backscattering (DB).
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that this distribution transitioned to one that was relatively isotropic, but with a slight con-
centration towards the LHCpoledue to theparticle chirality. Thus, asbefore, in transitioning
between these two distributions, there exists an intermediate thickness at which the DoP
attains a minimum value. This does not occur for incident LHC, as the initial distribution of
scattered states is already concentrated at the LHC pole and no such transition occurs as
thickness increases. For incident LIN, the distribution is initially focused at a point on the
equator of the Poincaré sphere and, in transitioning towards a distribution focused at the
LHC pole, there is no intermediate thickness at which the distribution is isotropic across
the entire sphere. Therefore, no such dip in the DoP occurs. We note that we also expect a
dip in the DoP to occur for incident RHC and x = 4, but as the DoP decay rate is small for
this size parameter, the medium is not thick enough, even at 30l, for the dip to occur. In
OT, as shown in Figure 7(b), we see that the behaviour resembles FT in the same way that
Figure 3(b) resembles Figure 3(a).

In Figure 7(c), we see that for x = 1 the DoP behaviour is similar to that of Figure 3(c),
but note that the DoP decays more quickly for RHC than for LHC. All three incident polar-
ization states settle on similar limiting DoP values, with LHC and RHC∼ 0.2 and LIN∼ 0.17.
For x = 4, dips in the DoP are again visible for RHC and LHC. Unlike in Figure 7(a), these
dips arise due to the flipping or preservation of helicity for different scattered field contri-
butions, as was the case in Figure 3(c). For LHC, which scatters more anisotropically, this
dip occurs at a larger thickness (L/l ∼ 27) than for RHC (L/l ∼ 3). In Figure 7(d), we see that
while linearly polarized light retains a largeDoP for large thicknesses irrespective of particle
size, dips in the DoP occur again for LHC and RHC and x = 4. For x = 1 and incident circu-
larly polarized light, we also see dips in the DoP, but the exact trends are unclear. For DoP
on the order of 10−2 a larger number of realizations than was used in this work is required
for good numerical convergence.

4. Conclusion

To conclude, we have presented a method for randomly generating scattering matrices
for sparse, complex media that incorporates the polarization properties of light, scattering
anisotropy and the physical constraints of unitarity and reciprocity. Furthermore, we are
able tomodel randommedia in themultiple scattering regime using amatrix cascade, only
requiring knowledge of the single scattering properties of the particles contained within
the medium.

Wehave validatedourmodel by reproducing knownbehaviour for systems consisting of
randomly distributed spherical particles, such as the dependence of the rate of depolariza-
tion on the incident polarization state. We have also shown that some of the polarization
statistics of our scattering matrices in the large thickness limit can be related to those of
randomGaussianmatrices and diagonal blocks ofmatrices drawn from the circular orthog-
onal ensemble. We have demonstrated the flexibility of our approach by considering the
example of a medium containing chiral particles, for which we found that the polarization
properties of the scattered field dependon thehelicity of the incident polarization state.We
were able to analyze themore intricate details of the rate of decayofDoPby considering the
evolutionof scatteredpolarization statedistributionson thePoincaré sphere,which is easily
done in our framework given that we have access to the entire scattering matrix. In addi-
tion to the data presented here, other possible studies include analyzing the polarization
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propertiesof the transmissioneigenchannels and thepolarizationpropertiesof correlations
between differentmatrix blocks, such as, for example, thememory effect. We reserve these
topics for future studies.

The biggest limitation of our model is the currently achievable angular resolution of
the scattered field, as this directly influences the size of the scattering matrix, which, when
large, requires a lot of memory and computation time when a large number of samples is
required for the study of statistical quantities. Generation of individual scattering matri-
ces, however, is very fast, taking only seconds or minutes, depending on the medium
thickness and number of modes. We therefore envisage that our method will serve as a
complement to the already existingMonte Carlo techniques andmay prove advantageous
in certain applications, particularly where correlations between different matrix elements
are of interest.
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Appendices

Appendix 1. Covariances and pseudo-covariances of scatteringmatrix
elements

Table A1 contains a list of expressions for the covariances and pseudo-covariances of the ele-
ments of the scattering matrix. Referring to the first column of Table A1, type ‘Regular’ refers to the
covariance of the form 〈B̄(j,i)baB̄∗

(v,u)dc〉 − 〈B̄(j,i)ba〉〈B̄∗
(v,u)dc〉, where B̄ denotes an arbitrary block of the

scattering matrix (i.e. one of r̄,t̄,t̄′ or r̄′). Type ‘Pseudo’ refers to the pseudo-covariance of the form
〈B̄(j,i)baB̄∗

(v,u)dc〉 − 〈B̄(j,i)ba〉〈B̄∗
(v,u)dc〉. All symbols are as defined in the main text.

Appendix 2. Composition law for scatteringmatrices

Suppose two slabs,S1 and S2, with planar faces perpendicular to the z-axis are arranged such thatS1
is to the left of S2, i.e. z1 < z2 where z1 and z2 are the z coordinates of the centers of the slabs. If S1

Table A1. Summary of the regular and pseudo covariances of the
elements of the scattering matrix.

Type Block B̄ Expression

Regular t̄ δRCijuv〈At(j,i)baAt∗(j,i)dc〉sinc
(
L

2
(kiz − kjz − kuz + kvz)

)
r̄ δRCijuv〈Ar(j,i)baAr∗(j,i)dc〉sinc

(
L

2
(kiz + kjz − kuz − kvz)

)
t̄′ δRCijuv〈At′(j,i)baAt

′∗
(j,i)dc〉sinc

(
L

2
(−kiz + kjz + kuz − kvz)

)
r̄′ δRCijuv〈Ar′(j,i)baAr

′∗
(j,i)dc〉sinc

(
L

2
(−kiz − kjz + kuz − kvz)

)
Pseudo t̄ δPCijuv〈At(j,i)baAt(j,i)dc〉sinc

(
L

2
(kiz − kjz + kuz − kvz)

)
r̄ δPCijuv〈Ar(j,i)baAr(j,i)dc〉sinc

(
L

2
(kiz + kjz + kuz + kvz)

)
t̄′ δPCijuv〈At′(j,i)baAt

′
(j,i)dc〉sinc

(
L

2
(−kiz + kjz − kuz + kvz)

)
r̄′ δPCijuv〈Ar′(j,i)baAr

′
(j,i)dc〉sinc

(
L

2
(−kiz − kjz − kuz − kvz)

)
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and S2 have scattering matrices S1 and S2 where

S1 =
(
r1 t′1
t1 r′1

)
and S2 =

(
r2 t′2
t2 r′2

)
, (A1)

then the scattering matrix S for the overall system composed of S1 and S2 is given by

S =
(
r t′
t r′

)
=

(
r1 + t′1r2Qt1 (J2Nk+1 ⊗ σ z)(t2Qt1)T(J2Nk+1 ⊗ σ z)

t2Qt1 r′2 + t2Qr′1t
′
2

)
, (A2)

where Q = (I − r′1r2)
−1, ⊗ is the Kronecker product, σ z = diag(1,−1) and Jn is the n × n exchange

matrix containing 1s on its anti-diagonal and 0s elsewhere.

Appendix 3. Scattering and transfer matrices centred at arbitrary positions

Suppose that a slab of thickness �L is centred at L0 so that the z coordinate of the position of
any particular particle within the slab is confined to the interval [L0 − �L/2, L0 + �L/2]. Inspect-
ing Equation (14), it can be seen that if such a slab has transmission matrix block t̄L0(j,i), then t̄L0(j,i) =
t̄0(j,i) exp[i(kiz − kjz)L0], where t̄0(j,i) describes amedium identical to that describedby t̄L0(j,i), but forwhich
the z coordinate of the position of each particle has been translated by L0 so that each particle is now
confined to the interval [−�L/2,�L/2] centred at the origin. Consideration of the block structure of
t̄L0 , which is the full transmission matrix for a scattering medium centred at z = L0, then leads to the
equation t̄L0 = 	

L0− t̄0	L0+ , where

	
L0+ =

⎛⎜⎜⎝
eik−NkzL0 . . . 0

...
. . .

...
0 . . . eikNkzL0

⎞⎟⎟⎠ ⊗
(
1 0
0 1

)
(A3)

and 	
L0− = (	

L0+ )∗. On the right hand side of Equation (A3), the arguments of the exponentials in
the first matrix run through all modes in the set K in order. Similar reasoning for the other blocks
of the scattering matrix leads to Equation (28) in the main text, where 	

L0± = diag(	
L0+ ,	L0− ) and

	
L0∓ = (	

L0± )∗.
Suppose now that a series of N scattering layers are situated with centres located at (from left to

right) L1, L2, . . . LN and let M̄Li
i denote the transfer matrix for the i’th layer. Using Equation (28), the

overall transfer matrix is given by

M̄ = M̄LN
N . . . M̄L3

3 M̄L2
2 M̄L1

1

= 	
LN∓ M̄0

N	
LN± . . . 	

L3∓ M̄0
3	

L3± 	
L2∓ M̄0

2	
L2± 	

L1∓ M̄0
1	

L1±

= 	
LN∓ M̄0

N . . . M̄0
3	

L3−L2± M̄0
2	

L2−L1± M̄0
1	

L1± , (A4)

where, as always, a superscript 0 denotes the corresponding transfer matrix when the slab is centred
at the origin. Deriving the final line of Equation (A4)makes use of the identity	

L2± 	
L1∓ = 	

L2−L1± , which
follows trivially from the definitions. In the special case L1 = 0 and Li+1 − Li = �L for 1 ≤ i ≤ N − 1,
as would be the case for contiguous slabs of equal thicknesses�L, Equation (A4) can bewritten in the
form

M̄ = 	N�L
∓

N∏
i=1

	�L
± M̄0

i . (A5)

Therefore, a transfermatrix for amediumof thicknessN�L can be computed by cascadingNmatrices
of the form 	�L± M̄0, where M̄0 can be randomly generated as discussed in the main text. Note that
the final matrix 	N�L∓ outside of the product in Equation (A5) imparts global phase terms onto each
2 × 2 block of M̄ (and S̄) and therefore does not alter any of the intensity or polarization statistics of
the randommatrix given by the product.
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Figure A1. Vectors used in scattering calculations. The vectors E, eθ , eφ , e‖ and e⊥ all lie in the plane
perpendicular to ek . The angle θ is positive in the diagram.

Appendix 4. Computation of single particle scatteringmatrices

Consider a particular pair of incident and outgoing plane waves with wavevectors ki and kj respec-
tively. Let eki , eφi , eθ i ekj , eφj and eθ j be the associated spherical polar vectors as defined as in
Equation (11). The vectors eki and ekj define the scattering plane, whose unit normal vector is given
by e⊥ = (eki × ekj)/|eki × ekj|. We then define the vectors e‖i = e⊥ × eki and e‖j = e⊥ × ekj so that
(e‖i , e⊥i , eki) and (e‖j , e⊥j , ekj) form right-handed triads. In the case that eki and ekj are parallel, we take
e‖i = eθ i , e‖j = eθ j and e⊥i = e⊥j = eφi .

Consider now the incident wavevector ki and let us temporarily drop the subscript i. the vectors
eθ , eφ , e‖ and e⊥ all lie in the sameplanewith unit normal vector given by ek . In general, however, the
vectors eθ and eφ will not align with e‖ and e⊥. Let θ be the angle between eθ and e‖, defined such
that −π < θ < π , where θ > 0 if (eθ × e‖)/|eθ × e‖| = ek (i.e. e‖ is an anti-clockwise rotation of eθ

about ek) and θ < 0 if (eθ × e‖)/|eθ × e‖| = −ek (i.e. e‖ is a clockwise rotation of eθ about ek). See
Figure A1 for a graphical representation of these vectors, along with the electric field vector E, which
also lies in the same plane.

Given θ , the electric field vector, which can be written as E = (Eθ , Eφ)T with respect to the basis
vectors eθ and eφ , can be transformed to E = (E‖, E⊥)T with respect to e‖ and e⊥ by(

E‖
E⊥

)
= R(θ)

(
Eθ

Eφ

)
, R(θ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
. (A6)

Note that conventions for thedirections of theunit vectors describedhere arenot consistent through-
out the literature. For example, in Ref [50], the normal to the scatteringplane is taken to bee′

⊥ = −e⊥.
In this case, the electric field component perpendicular to the scattering plane is given by E′

⊥ = −E⊥.
Following the convention used in Ref [50], it can ultimately be shown that(

Eθ j

Eφj

)
= R(−θj)σ z

(
S2 S3
S4 S1

)
σ zR(θi)

(
Eθ i

Eφi

)
, (A7)

where S1, S2, S3 and S4 are scattering coefficients defined with respect to the scattering plane and θi

and θj are the angles between eθ i , e‖i and eθ j , e‖j respectively. Finally, the matrix At/r
(j,i) is given by the

product of the five matrices in Equation (A7).
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