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Abstract. Optimization of polarimeters has historically been achieved using an assortment of performance met-
rics. Selection of an optimization parameter is, however, frequently made on an ad hoc basis. We rigorously
demonstrate that optimization strategies in Stokes polarimetry based on three common metrics, namely the
Frobenius condition number of the instrument matrix, the determinant of the associated Gram matrix, or the
equally weighted variance, are frequently formally equivalent. In particular, using each metric, we derive the same
set of constraints on the measurement states, correcting a previously reported proof, and show that these can be
satisfied using spherical 2 designs. Discussion of scenarios in which equivalence between the metrics breaks
down is also given. Our conclusions are equally applicable to optimization of the illumination states in Mueller
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1 Introduction
Quantitative analysis of the state of polarization of light pro-
vides a powerful tool in modern science. Applications vary
from microscopy, biomedical diagnosis, and astrophysics1–3

to crystallographic, material, and single-molecule studies.4,5

While the polarization state of light itself can be used to
transmit information, hence presenting new opportunities
in optical data storage and communications,6–9 changes in
polarization induced by a material can alternatively be used
for object detection10 or to characterize sample properties,
such as chirality or molecular orientation.11–13

Stokes polarimeters, which allow a complete characteri-
zation of the polarization state of input light as described
by the associated 4 × 1 Stokes vector S, comprise of N (≥4)
distinct measurements that can be multiplexed in time,14

frequency,15 or space.16 Fundamentally, each constituent
measurement outputs an intensity Ij (j ∈ ½1; N�), which is
proportional to the projection of the incident Stokes vector
onto an analysis state vector Wj, i.e., Ij ¼ WT

j S. Central
to the description and design of Stokes polarimeters is
hence the so-called instrument or measurement matrix W ¼
ðW1;W2; : : : ; ÞT formed from stacking the set of analysis
vectors. In order to obtain an estimate of the Stokes vector
from the set of projections Ij, the measurement matrix must
be inverted. So as to limit noise propagation through this
inversion process, optimization of the measurement matrix
is hence frequently performed. Optimization in this vein
has been performed using different metrics including the
associated information content,17–19 matrix determinant,20–22

signal-to-noise ratio,23 equally weighted variance (EWV),24,25

and condition number.21–23,25–29

Mueller matrix polarimeters, on the other hand, combine
a Stokes polarimeter with use of multiple incident polarized
states so as to measure the full Mueller matrix of an object.
Variation of the probing polarization states (as can be

described using an analogous illumination matrix), therefore,
introduces additional degrees of freedom, hence admitting
further optimization.17,28–32 Application specific optimiza-
tion of polarimeters has also been reported, for example, in
detection and imaging problems the polarization contrast is
a more suitable metric.33,34

Recently, the equivalence of a number of optimization
metrics, namely the EWV, the condition number of W,
and the determinant of the associated Gram matrix, was
discussed by Foreman et al.35 Additionally, Foreman et al.
proved that a Stokes polarimeter is optimal (as characterized
by these metrics) when the set of analysis states defines a
spherical 2 design36 on the unit Poincaré sphere. A re-exami-
nation of the equivalence between these metrics is, however,
necessary due to an error in the proof presented in Ref. 35.
The goal of this paper is, therefore, to provide a rigorous
proof that the conclusions of Ref. 35 hold. Our derivations
also elicit greater insight into the optimization of nonideal
Stokes polarimeters, which is hence discussed. We addition-
ally note that our results are equally applicable to optimiza-
tion of the probing states used in Mueller matrix polarimetry
due to the similar matrix structure of the problem.31,37

2 Optimal Polarimetry with Spherical 2 Designs
The instrument matrixW of a polarimeter is anN × 4matrix,
the rows of which are the Stokes vectors of the N polariza-
tion states being analyzed, normalized such that the polarim-
eter is passive. Accordingly, the instrument matrix has the
parametric form:
EQ-TARGET;temp:intralink-;e001;326;173

W ¼ 1
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where r is an N × 1 vector of ones and Q is the matrix
formed from the 3 × 1 vectors wj (j ∈ ½1; N�) of unit norm.
Note that throughout this work bold notation is used to
signify column vectors while blackboard bold font denotes
matrices. Note that we have assumed an “ideal” instrument
matrix, in the sense that the transmittance and degree of
polarization of all the rows are equal to one. Generalization
of our results to arbitrary instrument matrices will be dis-
cussed in Sec. 4.

In Stokes polarimetry, one performs N intensity measure-
ments Ij, j ∈ ½1; N� by projecting the input Stokes vector S
onto each of the N analyzers described by the N rows of
the matrix W. If these measurements are stacked in an N-
dimensional vector I ¼ ðI1; I2; : : : ; INÞT, and if we assume
that the measurements are perturbed by white additive noise,
we obtain

EQ-TARGET;temp:intralink-;e002;63;576I ¼ WSþ Δ; (2)

where Δ is an N × 1 random vector with covariance matrix
σ2IN and In denotes the n × n identity matrix. The maximum-
likelihood estimate of S is obtained by

EQ-TARGET;temp:intralink-;e003;63;514Ŝ ¼ WþI; (3)

where

EQ-TARGET;temp:intralink-;e004;63;472Wþ ¼ ðWTWÞ−1WT (4)

denotes the pseudoinverse matrix. The estimate Ŝ is a ran-
dom vector of mean S (i.e., the estimator is unbiased) and
of covariance matrix17,23,24

EQ-TARGET;temp:intralink-;e005;63;409KS ¼ σ2ðWTWÞ−1: (5)

The estimation variances of each element of the Stokes
vector estimate are the diagonal elements of this matrix.
A natural goal of polarimeter optimization is to find the
measurement matrix W that minimizes the sum of these var-
iances, i.e., the trace of KS. The corresponding performance
metric is called the EWV, i.e.,

EQ-TARGET;temp:intralink-;e006;63;312EWV ¼ trðKSÞ ¼ σ2trðG−1Þ; (6)

where

EQ-TARGET;temp:intralink-;e007;63;269G ¼ WTW (7)

denotes the Gram matrix associated with W.
To optimize the EWV, we first express the Gram matrixG

in block format, viz.

EQ-TARGET;temp:intralink-;e008;63;207G ¼ 1

4

�
N rTQ
QTr QTQ

�
≜
�
A BT

C D

�
: (8)

The inverse of the Gram matrix can then be expressed in
the form38

EQ-TARGET;temp:intralink-;e009;63;142G−1 ¼
�
A−1 þ A−1BTM−1CA−1 −A−1BTM−1

−M−1CA−1 M−1

�
; (9)

where the matrix

EQ-TARGET;temp:intralink-;e010;63;86M ¼ ðD − CA−1BTÞ (10)

is the Schur complement of the upper left block of G.
This implies that the trace we seek can be written as

EQ-TARGET;temp:intralink-;e011;326;730trðG−1Þ ¼ A−1 þ A−1BTM−1CA−1 þ trðM−1Þ: (11)

Substituting Eq. (8) into Eq. (10), the Schur complement
takes the form:

EQ-TARGET;temp:intralink-;e012;326;677M ¼ 1

4

�
QTQ −

qqT

N

�
; (12)

where q ¼ QTr is an N-dimensional vector. Upon using
the identity38

EQ-TARGET;temp:intralink-;e013;326;609ðZþ xyTÞ−1 ¼ Z−1 −
Z−1xyTZ−1

1þ yTZ−1x
; (13)

with x ¼ −y ¼ q∕
ffiffiffiffi
N

p
and Z ¼ QTQ, we find

EQ-TARGET;temp:intralink-;e014;326;553M−1 ¼ 4ðQTQÞ−1 þ 4
ðQTQÞ−1qqTðQTQÞ−1
N − qTðQTQÞ−1q : (14)

Direct substitution from Eqs. (8) and (14) into Eq. (11) yields

EQ-TARGET;temp:intralink-;e015;326;497

trðG−1Þ ¼ 4

�
1

N
þ tr½ðQTQÞ−1�

þ qT½NðQTQÞ−2 þ ðQTQÞ−1�q
N½N − qTðQTQÞ−1q�

�
; (15)

where we have also used the cyclic property of the trace oper-
ation and the identity trðXqTqÞ ¼ qTXq for arbitrary X.38

Noting that N > 0 and that QTQ is positive definite,
it follows immediately that the first two terms in Eq. (15)
are positive. We show in Sec. 6 that the third term is also
positive. Consequently, the trace in Eq. (15) is minimal when
its three terms are minimal. The first term is constant, and the
third is minimal when it is null, i.e., when q ¼ QTr ¼ 0 or
equivalently

EQ-TARGET;temp:intralink-;e016;326;324

XN
n¼1

wn ¼ 0: (16)

Importantly, Eq. (16) expresses a polynomial constraint
that must be satisfied by an optimal measurement matrix and
is equivalent to that given in Eq. (4) of Ref. 35. When
Eq. (16) holds, minimizing trðG−1Þ is equivalent to minimiz-
ing tr½ðQTQÞ−1�. This optimization has to be done under the
constraint that the trace of the matrix QTQ is constant as
follows from the normalization of wj. Indeed, since each row
of the matrix Q is a unit-norm vector, we have

EQ-TARGET;temp:intralink-;e017;326;186trðQTQÞ ¼ trðQQTÞ ¼ N: (17)

We thus have to solve the following constrained optimization
problem, set in Lagrange form:

EQ-TARGET;temp:intralink-;e018;326;132ΨðQÞ ¼ tr½ðQTQÞ−1� − μ½trðQTQÞ − N�; (18)

where μ is a Lagrange multiplier. The Lagrange function can
also be expressed as
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EQ-TARGET;temp:intralink-;e019;63;752ΨðβÞ ¼
X3
j¼1

1

βj
þ μ

�X3
j¼1

βj − N

�
; (19)

where βj, j ∈ ½1;3�, are the positive eigenvalues of the matrix
QTQ. Equating the gradient of Eq. (19) with respect to
β to zero and enforcing the constraint (∂Ψ∕∂μ ¼ 0) yields
βj ¼ 1∕ ffiffiffi

μ
p ¼ N∕3 for all j ∈ ½1;3�, such that

EQ-TARGET;temp:intralink-;e020;63;666QTQ ¼
XN
j¼1

wjwT
j ¼ N

3
I3: (20)

Equation (20) is the second set of polynomial constraints
derived from Ref. 35. The form of the Gram matrix G that
hence minimizes the EWV of the instrument matrix is thus
EQ-TARGET;temp:intralink-;e021;63;582

G ¼ WTW ¼ N
12

2
66664

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
77775: (21)

According to Eq. (5), the corresponding covariance of the
Stokes vector estimate is hence:
EQ-TARGET;temp:intralink-;e022;63;479

KS ¼
4

N
σ2

2
66664

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

3
77775: (22)

This result is important since it specifies, in a very simple
closed-form, the fundamental limit of the estimation variance
that can be reached by a Stokes polarimeter with a given
number of measurement vectors in the presence of additive
noise. For example, we note that the minimum achievable
variance on an estimate of the intensity (i.e., the first element
of the Stokes vector) is three times better than that on the
other Stokes parameters. Moreover, the covariance matrix is
diagonal, which means that the fluctuations of each element
of the Stokes vector estimator are statistically independent.
This property is important when performing theoretical com-
putations involving Stokes vector estimators. Incidentally,
we note that the minimum value of the equally weighted vari-
ance is EWV ¼ 40σ2∕N.

Finally, the conditions expressed by Eqs. (16) and (20) are
satisfied when the set of measurement states on the normal-
ized Poincaré sphere, defined by fwjg, j ∈ ½1; N�, constitute
a spherical 2 design (see Sec. 7 for a proof) as reported in
Ref. 35. A spherical t design is defined as a collection of N
points fwjg on the surface of the unit sphere (in our case in
R3) for which the normalized integral of any polynomial
function, fðwÞ, of degree t or less is equal to the average
taken over the N points. The Platonic solids, i.e., the regular
tetrahedron (N ¼ 4), the octahedron (N ¼ 6), the cube
(N ¼ 8), the icosahedron (N ¼ 12), and the dodecahedron
(N ¼ 20), are well-known examples of spherical 2 designs.
A geometric scheme to construct optimal polarimeters for
any even N, any factorable odd value of N, and for prime
N > 5 has also been described in Ref. 35. Further examples
of spherical designs and construction strategies can be found

in Refs. 39–41. Critically, spherical 2 designs are known
to exist for any N ≥ 4, with the important exception of
N ¼ 5.39,41 In the context of optimal polarimetry, this implies
that for N ¼ 5 the constraints described by Eqs. (16) and
(20) cannot be fully satisfied. Recalling Eq. (15), this arises
because the second and third terms cannot be simultaneously
minimized. Although the resulting measurement states
do not form a spherical 2 design, the sum of these two
terms, and hence the EWV, can nevertheless be minimized
yielding a value of 8.119σ2. The corresponding analysis
states define a square pyramid inscribed by the unit Poincaré
sphere.

3 Equivalence of Optimization Metrics
We will now demonstrate that the optimization of two
other popular metrics, namely the condition number and the
determinant of the Gram matrix, lead to exactly the same
measurement frames as the EWV so that these three criteria
are strictly equivalent.

3.1 Condition Number

The condition number κ of the instrument matrix is defined
by κ ¼ kWkkWþk, where Wþ is the pseudoinverse matrix
and k · · · k denotes the matrix norm. In principle, any
choice of matrix norm can be made, however, within the con-
text of polarimetry, the most common choices are those of
either the 2-norm,42,43 defined as the maximum singular
value of W, or the Frobenius norm,27,35,43 given by38

EQ-TARGET;temp:intralink-;e023;326;438kPkF ¼ ½trðPTPÞ�1∕2 ¼ ½trðPPTÞ�1∕2: (23)

In general, the 2-norm and Frobenius norms for a matrix W
satisfy the inequality: kWk2 ≤ kWkF ≤

ffiffiffi
r

p kWk2, where r
denotes the rank of W. Equality is only achieved for a
rank one matrix, which is insufficient in Stokes polarimetry
since a rank four matrix is required to ensure that the polari-
zation reconstruction problem is not underdetermined.
Accordingly, it is important to note that the choice of matrix
norm can affect the result of optimization as has also previ-
ously been reported.43 In this paper, we exclusively consider
the Frobenius norm (and henceforth drop the subscript F).
This selection is motivated by the resulting equivalence
between the condition number and EWV. To prove this
equivalence [for polarimeters with instrument matrix of
the form of Eq. (1)], we first note that our choice of normali-
zation of the measurement states Wj ¼ ½1;wj�T∕2 implies
that

EQ-TARGET;temp:intralink-;e024;326;231kWk2 ¼ trðWTWÞ ¼ N
2
: (24)

Moreover, using the definition of the pseudoinverse and
EWV given by Eqs. (4) and (6) respectively, it is easily
shown that

EQ-TARGET;temp:intralink-;e025;326;156kWþk2 ¼ tr½ðWþÞTWþ� ¼ tr½ðWTWÞ−1� ¼ EWV

σ2
: (25)

Consequently, one can write

EQ-TARGET;temp:intralink-;e026;326;104κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
2σ2

EWV

r
: (26)
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For any polarimeter with a measurement matrix of the form
of Eq. (1), the condition number is thus simply proportional
to the square root of the EWV (regardless of whether
Eqs. (16) and (20) hold or not). It is thus evident that
minimizing the condition number, defined in terms of the
Frobenius norm, is equivalent to minimizing the EWV.
Accordingly, the minimum condition number is κ ¼ ffiffiffiffiffi

20
p

≈
4.472 except for the N ¼ 5 case where the minimum condi-
tion number is found to be ≈ 4.505.

3.2 Determinant of the Gram Matrix

The first works on Stokes polarimeter optimization consid-
ered devices with a minimal number (N ¼ 4) of measure-
ment vectors.26 Optimization of such systems used the
determinant of the matrix W (which for this value of N is
square and nonsingular) as a performance metric. In this
case, the optimal structure found dictated that the measure-
ment vectors defined a regular tetrahedron on the Poincaré
sphere, a result that we also found above by optimizing the
EWV. We show in this section that this result comes from
the strict equivalence of these two optimization metrics.
This equivalence can be generalized to any value of N if one
considers the optimization of the determinant of the Gram
matrix G since for N > 4 the matrix W itself is rectangular
and its determinant is thus not defined. Notice that this
equivalence was mentioned in Ref. 35, but there was an erro-
neous step in the logic presented in that work (see Sec. 8 for
more details).

We intend here to show that maximization of the deter-
minant jGj yields the same polynomial constraints embodied
in Eqs. (16) and (20). Considering the block form of the
Gram matrix in Eq. (8), its determinant can be written as38

EQ-TARGET;temp:intralink-;e027;63;395jGj ¼ jA − BTD−1CjjDj

¼ 1

256
½N − rTQðQTQÞ−1QTr�jQTQj: (27)

Maximizing this expression means maximizing the two fac-
tors appearing in the product. The first factor is maximized
if the positive subtractive term is zero, that is to say when
the vector QTr ¼ 0, corresponding to the first polynomial
constraint expressed in Eq. (16).

For the second factor, we note that jQTQj ¼ Q
3
j¼1 βj

where βj, j ∈ ½1;3�, are again the eigenvalues of the matrix
QTQ, which are positive since QTQ is positive definite.
Moreover, according to Eq. (17), the matrix QTQ has
constant trace. Maximization of jQTQj is thus once again
a constrained optimization problem, which can be solved
using the method of Lagrange multipliers. We will consider
maximization of ln jQTQj, which is equivalent since the log-
arithmic function is monotonically increasing. The Lagrange
function then becomes

EQ-TARGET;temp:intralink-;e028;63;166ΨðβÞ ¼
X3
j¼1

ln βj − μ

�X3
j¼1

βj − N

�
: (28)

Following the standard optimization procedure we find,
similarly to Sec. 2, that βj ¼ 1∕μ ¼ N∕3 for all j ∈ ½1;2; 3�.
As shown in Sec. 2, the second polynomial constraint
expressed in Eq. (20) then follows. Therefore, we have
ultimately shown that minimization of the EWV (and thus

also of the Frobenius condition number of the instrument
matrix) of a polarimeter yields the same set of optimality
constraints as maximizing the determinant of the associated
Gram matrix.

4 Discussion
The main conclusion from the analysis presented in the
Secs. 2 and 3 is that among all measurement matrices of
the form described by Eq. (1), those that maximize the
condition number, the EWVand the determinant are exactly
the same. Our result can thus be said to unify many previous
works on polarimeter optimization, e.g., the early work of
Azzam et al.26 (which optimized based on the instrument
matrix determinant), Ambirajan and Look22 (based on the
condition number and determinant), Sabatke et al.24 (based
on the EWVand determinant), and Tyo44 (based on condition
number), among many others.

Modeling of W based on Eq. (1) implies that the trans-
mittance of each polarization analyzer and the degree of
polarization of the transmitted light are both equal to one.
This assumption is frequently made in polarimetry, however,
it is interesting to consider the case where it is not fulfilled. In
the general case, each analyzer, as described by each row of
the measurement matrix, may have a different transmission
ti, i ∈ ½1; N�, and a different resulting degree of polarization
Pi, i ∈ ½1; N�, such that the measurement matrix can be
expressed in the form:

EQ-TARGET;temp:intralink-;e029;326;454

W ¼ 1

2

2
666664

t1 t1P1wT
1

t2 t2P2wT
2

..

. ..
.

tN tNPNwT
N

3
777775
≜
1

2
ðTr TPQ Þ; (29)

where T ¼ diagðt1; : : : ; tNÞ and P ¼ diagðP1; : : : ; PnÞ are
diagonal matrices. It is easy to demonstrate that this general
form yields

EQ-TARGET;temp:intralink-;e030;326;335kWk2 ¼ 1

4

XN
i¼1

ð1þ P2
i Þt2i : (30)

Consequently, one can generalize Eq. (26) to

EQ-TARGET;temp:intralink-;e031;326;274κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1ð1þ P2

i Þt2i
p

2σ

ffiffiffiffiffiffiffiffiffiffiffi
EWV

p
: (31)

Notably, Eq. (31) allows us to generalize the result ob-
tained in Sec. 3. Specifically, when the transmission and
degree of polarization of each analysis vector is fixed (albeit
arbitrary), optimization of the positions of the analysis state
vectors on the normalized Poincaré sphere (i.e., of wn) yields
the same result regardless of whether the condition number
or the EWV is used as the performance metric. The EWV,
however, also depends on the transmission and polarization
factors (ti and Pi), such that this equivalence breaks down
when Pi and ti are not fixed for each individual measure-
ment. Letting t ¼ Tr, Y ¼ TPQ, and y ¼ Yt, by following
a similar logic to Sec. 2 it can be shown [in analogy to
Eq. (15)] that
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EQ-TARGET;temp:intralink-;e032;63;752

EWV ¼ 4σ2
�
1

T
þ tr½ðYTYÞ−1�

þ yT½TðYTYÞ−2 þ ðYTYÞ−1�y
T½T − yTðYTYÞ−1y�

�
; (32)

where T ¼ tTt ¼ P
N
i¼1 t

2
i . When the transmittances and

degrees of polarization are identical (and fixed) for all N
measurements (i.e., ti ¼ τ and Pi ¼ ρ for all i), it follows
that
EQ-TARGET;temp:intralink-;e033;63;642

EWV ¼ 4σ2

τ2

�
1

N
þ 1

ρ2
tr½ðQTQÞ−1�

þ qT½ðN∕ρ2ÞðQTQÞ−2 þ ðQTQÞ−1�q
N½N − qTðQTQÞ−1q�

�
; (33)

and the resulting optimal structures found upon minimization
of Eq. (33) are once again spherical 2 designs. The minimum
EWV in this case is 4σ2ð1þ 9ρ−2Þ∕ðτ2NÞ, correspond-
ing to a condition number of κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ρ2Þð1þ 9ρ−2Þ

p
.

Determining the optimal structures for the more general case
(which are not spherical designs) is, however, an interesting
question that remains as future work.

Another important practical question is which of the three
considered metrics is the most appropriate for evaluating the
performance of a polarimeter under more general conditions.
Indeed, from this point of view, the metrics are not neces-
sarily equivalent, particularly in complex noise regimes or
when nonideal polarization state analyzers are used. This is
most easily seen by noting that the three metrics can be
expressed in the form:

EQ-TARGET;temp:intralink-;e034;63;399jGj ¼
Y4
i¼1

νi; (34)

EQ-TARGET;temp:intralink-;e035;63;353κ ¼
�X4

i¼1

νi

�1∕2�X4
i¼1

1

νi

�1∕2

; (35)

EQ-TARGET;temp:intralink-;e036;63;312EWV ¼
X4
i¼1

γi; (36)

where νi, i ∈ ½1;4� denote the eigenvalues of G and γi are
the eigenvalues of the covariance matrix KS. While in the
presence of additive white noise KS takes the form given by
Eq. (5) such that γi ¼ σ2∕νi, for more general noise regimes
the form of the covariance matrix is more complex viz.

EQ-TARGET;temp:intralink-;e037;63;212KS ¼ G−1WTKIWG−T; (37)

where KI is the covariance matrix of the measured inten-
sities. Although the form of each metric is similar, there are
nevertheless important differences. In particular, two differ-
ent sets of eigenvalues fνig may lead to the same value of κ,
but different values of jGj and EWV, and vice versa. This is
most obvious when the noise variances on each detector are
unequal, however, it can also result in the case of depolariz-
ing or partially transmitting polarization analyzers due
to the different parametric dependencies of Eqs. (34)–(36).
The question of how to choose the best metric is, therefore,

somewhat arbitrary; however, we argue that there is a strong
objective advantage to use of the EWV. Indeed, the EWV
corresponds to an estimation variance, which has a clear
and useful statistical meaning. For example, it enables easy
comparison of two different polarimeter structures: saying
that polarimeter A has an EWV double that of polarimeter
B signifies that the variance of the estimated Stokes vector
is twice as large. In sharp contrast, a ratio of matrix deter-
minants or condition numbers is more difficult to interpret
in terms of estimation errors.

Another strong advantage of the EWV is that it can be
used for polarimeter optimization in the presence of non-
additive noises sources. The EWV has been used to deter-
mine the optimal measurement frames in the presence of
Poisson shot noise.45,46 In this case, the covariance matrix of
the Stokes estimate takes a different form to that of Eq. (5).
Consequently, the EWV is no longer given by Eq. (6),
and thus not proportional to the square of the condition num-
ber. Furthermore, when measurements are simultaneously
affected by several types of statistically independent noise
sources, the total EWV is simply the sum of the individual
EWVs for each noise source. This additive property has been
recently employed to characterize the actual performance of
microgrid-based polarimetric cameras in the presence of both
additive detection noise and Poisson shot noise.47

In conclusion, the key finding of the present work is that
when optimizing the estimation performance of a polarim-
eter in the presence of additive Gaussian noise, the Frobenius
condition number of the instrument matrix, the Gram deter-
minant, and EWV are three strictly equivalent metrics.
When evaluating and comparing the performance of different
polarimeters however, or when optimizing polarimeters in
the presence of nonadditive, non-Gaussian noise sources,
the EWV has strong advantages compared with the other
two metrics.

5 Conclusions
We have shown that optimization of the EWV, of the
Frobenius condition number, or of the determinant of the
Gram matrix of a Stokes polarimeter leads to the same opti-
mal measurement structures, namely, spherical 2 designs.
These structures yield a very simple closed-form expression
for the covariance matrix of the Stokes vector estimator and
thus of the variances of each element of the Stokes vector.
These expressions constitute the fundamental limit of the
estimation variance that can be reached by a Stokes polarim-
eter in the presence of additive noise.

As a conclusion, we would like to stress that although
the three considered metrics are equivalent for polarimeter
optimization in the presence of additive noise, the EWV has
the simplest physical interpretation since it corresponds to an
estimation variance, which has a clear and useful statistical
meaning. As a consequence, in contrast to the two other
metrics, the EWV can be used for polarimeter optimization
in the presence of noise sources with nonadditive, non-
Gaussian, or mixed statistics. As discussed above, this prob-
lem has already been addressed by optimizing the EWV
obtained after application of the pseudoinverse estimator.45,46

Although this procedure gives satisfying results in practice,48

it is not strictly optimal. Indeed, in the presence of non-
additive and non-Gaussian noise, by virtue of the Cramér-
Rao lower bound, the appropriate criterion is the trace of the
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inverse Fisher information matrix.17,18 The value of this
metric corresponds to the EWV of an efficient estimator
(where “efficient” is meant here in the precise sense used in
estimation theory49), whereas in general the pseudoinverse
estimator is not efficient. The interesting problem of analyz-
ing the differences between the optimal measurement struc-
tures found using a Fisher information-based metric and the
spherical 2 designs remains as future work.

6 Appendix A: Positivity of the Third Term of
Eq. (15)

We demonstrate in this section that the third term of the
expression of trðG−1Þ in Eq. (15) is positive definite. Since
the matrixQTQ is by definition a positive matrix, the numer-
ator of this term is also positive. We, therefore, need only
analyze the denominator. Considering then the singular value
decomposition Q ¼ UFVT, where U and V are unitary
matrices and F is diagonal, it is easily seen that

EQ-TARGET;temp:intralink-;e038;63;553QðQTQÞ−1QT ¼ UFUT; (38)

where F ¼ DðDTDÞ−1DT is a diagonal N × N matrix. The
first three diagonal elements of F are unity, whereas the other
elements are zero. We thus have

EQ-TARGET;temp:intralink-;e039;63;489qTðQTQÞ−1q ¼ vTFv ¼
X3
i¼1

v2i ; (39)

where v ¼ UTr is an N-dimensional vector. Moreover

EQ-TARGET;temp:intralink-;e040;63;430

X3
i¼1

v2i ≤
XN
i¼1

v2i ¼ kvk2 ¼ krk2 ¼ N; (40)

since U is a unitary matrix. Hence

EQ-TARGET;temp:intralink-;e041;63;371qTðQTQÞ−1q ≤ N; (41)

which means that the third term of Eq. (15) is positive.

7 Appendix B: Satisfying Eqs. (16) and (20) with
Spherical t Designs

Consider a finite set of points fwjg (j ∈ ½1; N�), which lie
on the surface of the three-dimensional unit sphere. The set
of points fwjg are said to constitute a spherical t design if
for any polynomial function fðwÞ of order t or lower:

EQ-TARGET;temp:intralink-;e042;63;250

XN
j¼1

fðwjÞ ¼ N
Z

fðwÞdσw; (42)

where dσw is the normalized surface area element of the unit
sphere.

Proof that Eqs. (16) and (20) can be satisfied using
spherical 2 designs follows by showing that we can generate
the constraints through appropriate choice of polynomial
functions fðwÞ of second-order degree or less in Eq. (42).
Considering first the case fðwÞ ¼ ws (s ∈ ½1;3�), substitution
into Eq. (42) yields:

EQ-TARGET;temp:intralink-;e043;63;111

XN
j¼1

wsj ¼ N
Z

wsdσw; (43)

where wsj is the value of the s’th element of wj. We
can express w in terms of the usual spherical polar co-
ordinates, i.e., w ¼ ðsin θ cos ϕ; sin θ sin ϕ; cos θÞT such
that 4πdσw ¼ sin θdθ dϕ. It is then simple to show that
∫wsdσw ¼ 0 for s ∈ ½1;3� such that Eq. (43) reduces to
Eq. (16). Similarly, using the polynomial function fðwÞ ¼
wswt for fs; tg ¼ f1;2; 3g, Eq. (42) becomes:

EQ-TARGET;temp:intralink-;e044;326;675

XN
j¼1

wsjwtj ¼ N
Z

wswtdσw: (44)

Evaluating the integral on the right-hand side yields δst∕3,
such that Eq. (44) reduces to Eq. (20), therefore, completing
our proof. Although we have proven that Eqs. (16) and (20)
can be satisfied by a spherical 2 design, it is worthwhile to
note that it automatically follows that they can also be sat-
isfied by a spherical design of higher order, t ≥ 2, because
a spherical t design is also a t − 1 design.

8 Appendix C: Previous Derivation
The constraints derived in Sec. 2 through direct minimization
of the EWV were first derived by Foreman et al. exploiting a
claimed equivalence between minimizing the trace of G−1

and maximizing the determinant ofG. Specifically, using the
definition of the matrix inverse and Jacobi’s formula, it was
first shown that the condition number can be expressed in
the form:35

EQ-TARGET;temp:intralink-;e045;326;447κ2 ¼ N
2
tr½ðWTWÞ−1� ¼ N

2

X4
i¼1

∂ ln jGj
∂Gii

; (45)

where Gii are the diagonal elements ofG. Based on Eq. (45),
Foreman et al. claim that the equivalence of optimization
metrics follows from the differential relation 2d ln κ ¼
−d ln jGj. Regrettably, this relation does not follow from
Eq. (45), nor in fact does it hold in general, as can be seen
by expressing both ln½trðG−1Þ� ¼ 2 ln κ þ const: and ln jGj
in terms of the eigenvalues of G.
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