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Optical whispering gallery mode (WGM) resonators are a powerful and versatile tool in many branches of science.
Fine-tuning of the central frequency and linewidth of individual resonances is, however, desirable in a number of
applications, including frequency conversion, optical communications, and efficient light–matter coupling.
To this end we present a detailed theoretical analysis of dielectric tuning of WGMs supported in axisymmetric
resonators. Using the Bethe–Schwinger equation and adopting an angular spectrum field representation, we study
the resonance shift and mode broadening of high-Q WGMs when a planar dielectric substrate is brought close to
the resonator. Particular focus is given to use of a uniaxial substrate with an arbitrarily aligned optic axis.
Competing red and blue resonance shifts (∼30 MHz), deriving from generation of a near-field material polari-
zation and back action from the radiation continuum, respectively, are found. Anomalous resonance shifts can
hence be observed depending on the substrate material, whereas mode broadening on the order of ∼50 MHz can
also be realized. Furthermore, polarization-selective coupling with extinction ratios of>104 can be achieved when
the resonator and substrate are of the same composition and their optic axes are chosen correctly. Double re-
fraction and properties of outcoupled beams are also discussed. © 2016 Optical Society of America

OCIS codes: (140.4780) Optical resonators; (260.5740) Resonance; (290.5825) Scattering theory; (160.1190) Anisotropic optical

materials.
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1. INTRODUCTION

Whispering gallery mode (WGM) resonators are a powerful
and versatile tool in modern day optics and have found great
employ as novel light sources [1–4], in spectroscopic studies
[5], frequency comb generation [6,7], quantum electrodynam-
ics [8,9], sensing [10], nonlinear optics [11,12], and optome-
chanics [13,14]. Such extensive usage derives from the narrow
bandwidths, high field strengths and small modal volumes
boasted by WGMs. Primarily, the resonance structure of
WGM resonators is dictated by their geometry and material
composition; however, tunability of resonance properties, such
as central frequency and linewidth, is desirable in a number of
applications. For example, WGM microcavities can be used as
tunable filters or switches, which play a central role in optical
signal processing and classical communication networks [15].
Alternatively, matching the frequency and bandwidth of
WGMs to those of atomic transitions [16] enables efficient
light–matter coupling as is required in quantum communications
[17] and information processing [18]. Controlled coupling and
tuning of WGM resonances can, moreover, greatly improve
the efficiency of polarization conversion [19] and nonlinear

optical processes such as second-harmonic generation or para-
metric oscillation [20,21] and are thus important for realization
of novel light sources and frequency converters.

A number of strategies for tuningWGM resonances based on
external temperature control [9], electro-optical [22] or thermo-
optical effects [23–25], and variation of an applied strain [26–
28] or pressure [29,30] have previously been reported in the lit-
erature. So-called dielectric tuning, in which a dielectric substrate
or prism (note we shall use the terms prism and substrate inter-
changeably throughout this text) is brought into close proximity
to a WGM resonator, has also been proposed and demonstrated
as a route to continuous fine tuning [16,31]. Several numerical
and approximate analytic techniques have been developed to
study the properties of WGMs in the presence of local dielectric
or plasmonic perturbations [32–35] and to model cavity–
waveguide coupling [36–40]. To date, however, limited consid-
eration has been given to birefringent resonators or couplers,
which are attracting increasing attention, especially in nonlinear
optics [12,41]. In this work, we present a detailed theoretical
formalism describing dielectric frequency tuning of WGM
resonances using planar substrates, in addition to quantifying
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substrate-induced linewidth changes. Emphasis is placed on the
use of arbitrary uniaxial dielectric planar substrates, which we
show can enable differential tuning and selective outcoupling
of transverse electric (TE) and transverse magnetic (TM)
WGMs [42]. We eschew a numerical approach in favor of an
analytic treatment due to the fundamental insights afforded
by the latter, such as identifying the origin of possible anomalous
blueshifts. Such analytic approaches are also frequently simpler to
implement and facilitate faster computations. The structure of
this paper is therefore as follows. In Section 2, we first generalize
the analytic WGM profiles given in [43] to account for the open
nature of WGM resonators and detail the properties of WGMs
in an isolated uniaxial axisymmetric resonator, as required in
subsequent derivations. After establishing a suitable angular
spectrum representation of WGMs, in Section 3 we continue
to determine the interface-induced coupling and resulting mode
distributions in the presence of a uniaxial dielectric prism.
Resonance shifts and mode broadening induced by introduction
of a planar substrate are subsequently derived by exploiting the
Bethe–Schwinger cavity perturbation formula in Section 4.
Critically, far-field contributions, which can give rise to anoma-
lous radiative shifts in open resonators [44], are incorporated into
the Bethe–Schwinger equation. Section 5 proceeds to present a
number of illustrative numerical results, before we finally con-
clude in Section 6.

2. WGMS IN OPEN AXISYMMETRIC
RESONATORS

In this section we discuss a number of WGM properties that
will be required in later sections. We consider a WGM with
vacuum wavelength λ � 2π∕k supported in a uniaxial axisym-
metric resonator in air with major radius R and for which the
radius of curvature of the outer surface in the polar direction
(rim radius) is P [see Fig. 1(a)]. We denote the ordinary and
extraordinary refractive indices of the resonator by no and ne ,

respectively. Throughout this work we assume that R ≫ λ and
P ≫ λ and that the optic axis of the resonator is parallel to the
symmetry axis (z cut). Furthermore, we restrict attention to
WGMs that are localized in the equatorial plane and lie close
to the resonator surface such that we can use the toroidal co-
ordinates �ρ; θ;ϕ�, where ρ � jρj is the distance from the
center of curvature of the resonator rim, θ is the toroidal polar
angle, and ϕ is the azimuthal angle (see Fig. 1). Due to the
strong confinement of WGMs, this local coordinate system
is also suitable for describing disk-like, ellipsoidal, and spherical
resonators [43,45]. With these assumptions, the amplitude of
the dominant electric field component is well described using a
scalar Helmholtz equation [43]. WGMs, however, are either
TE or TM polarized, i.e., the corresponding electric- and mag-
netic-field vectors lie tangential to the resonator surface. Within
the resonator, the associated unit (electric field) polarization
vectors can thus be expressed as σ̂TEres ≈ −θ̂ and σ̂TMres ≈ ρ̂, where
we have chosen to neglect the azimuthal polarization compo-
nent of the TMmode due to its small magnitude relative to the
radial component. Note that we shall use the caret notation
exclusively to denote unit vectors for which jûj � 1.
The interior electric field distribution (ρ ≤ P) can thus be ex-
pressed as

Eν
m�r� ≈ E0 exp

�
−

θ2

2Θ2
m

�
Hp

�
θ

Θm

�
Ai�f ν

m�ρ��eimϕσ̂νres; (1)

where, with reference to Fig. 1(a), r � �x; y; z� is the position
vector relative to the center of the resonator; Hp�z� are the
Hermite polynomials of degree p � 0; 1;…; m � �m; p; q�
jointly describes the azimuthal, polar, and radial indices; ν �
TE or TM is the polarization index; and E0 is an arbitrary nor-
malization constant, which is henceforth taken to be unity for
simplicity. Note that highly localized WGMs correspond to
m ≫ 1 and small values of p and q (∼1). Equation (1) was origi-
nally derived assuming a Dirchlet boundary condition at the res-
onator surface [43]; however, we account for the openness of the
resonator through use of the effective radius Rν � R � Δν,
where Δν � ξ∕κ describes the penetration depth of the
WGM field into the host medium, κ � k

ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p
, ξ � 1∕n2 �

1∕n2o for TMmodes and ξ � 1, n � ne for TEmodes, such that

f ν
m�ρ� � �P � Δν − ρ�∕um − ζq; (2)

Θm � R3∕4
ν P−3∕4 m−1∕2; (3)

um � 2−1∕3Rνm−2∕3; (4)

where ζq is the qth root of the Airy function Ai�−ζ� � 0. The
validity and accuracy of use of the effective radius Rν has pre-
viously been verified [45,46].

Because of the strongly confined nature of WGMs, the total
energy stored within the resonator volume, V , can be found by
integrating over a toroidal volume defined by the local curva-
ture of the resonator, as shown in Fig. 1, yielding

U res
v ≈

1

2
ε0n2

Z
2π

0

Z
2π

0

Z
P

0

jEν
m�r�j2ρjR−P�ρcosθjdρdθdϕ;

(5)

Fig. 1. WGM resonator geometry. (a) Definition of the coordinate
system and geometrical parameters of an axisymmetric resonator per-
turbed by a planar substrate. (b) Coordinate system in the far field
defining the angular dependence of a plane wave component with
wavevector k. (c) Schematic of the integration volume and surface used
to evaluate the resonance shift and mode broadening upon an infini-
tesimal shift of the dielectric substrate away from the resonator.
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where we have also introduced the vector v � �ν; m; p; q� con-
taining all four mode indices. Throughout this work, we shall
freely switch between using the combined mode index v and
separating the polarization and scalar indices as ν andm depend-
ing on whether the polarization index must be emphasized. For
large m and small p, the mode is highly localized near the outer
surface ρ ≈ P and at the equator of the resonator, whereby we
can make the small angle approximation sin θ ≈ θ ≈ z∕ρ.
Combining Eqs. (1) and (5) hence gives

U res
v ≈ πϵ0n2R

Z
∞

−∞
exp

�
−

z2

P2Θ2
m

�
H 2

p

�
z

PΘm

�
dz

×
Z

P

0

Ai2�f ν
m�ρ��dρ: (6)

Use of the orthogonality relation of the Hermite functionsR∞
−∞ exp�−z2�Hp�z�Ha�z�dz �

ffiffiffi
π

p
2pp!δap, where δap is the

Kronecker delta, then yields

U res
v ≈ 2pp!π3∕2ϵ0umn2ΘmRP�gv�0� − gv�P��; (7)

where gv�ρ� � f ν
m�ρ�Ai�f ν

m�ρ��2 − Ai 0�f ν
m�ρ��2, and the prime

notation denotes differentiation with respect to the argument.
For large m we note that gv�0� ≈ 0 and gv�P� ≈ −Ai 0�−ζq�2.

Exterior to the resonator (ρ ≥ P), the WGM exhibits an
evanescent decay [46]:

Eν
m�r� ≈ Aν exp

�
−

θ2

2Θ2
m

�
Hp

�
θ

Θm

�
e−κ�ρ−P�eimϕσ̂νsur; (8)

where Aν is a normalization constant required to match the fields
at the resonator surface, σ̂TEsur � −θ̂, σ̂TMsur � iasurϕ̂ − bsurρ̂, and
asur∕bsur ≈ �1 − n−2o �1∕2 as follows from application of the
Fresnel coefficients for light undergoing total internal reflection
at a glancing angle to the resonator surface [47]. From applying
the usual Maxwell boundary conditions it follows that
ATE � Ai�ΔTE∕um − ζq�. Although within the bulk of the res-
onator the magnitude of the azimuthal component, which varies
as ∼Ai 0�f ν

m�ρ��, is negligible with respect to the radial field com-
ponent [as per Eq. (1)], at the interior resonator surface it
becomes �n4o − n2o �1∕2 times greater than that of the radial com-
ponent. This ratio follows by recalling asur∕bsur ≈ �1 − n−2o �1∕2
and invoking the usual continuity conditions of the tangential
and perpendicular electric field components. When considering
the amplitude discontinuity of TM modes, both field compo-
nents must thus be included. With this in mind it can be shown
that ATM � �2n4o − n2o �1∕2Ai�ΔTM∕um − ζq�. Moreover, given
Eq. (8), it follows that the relative contribution to the mode en-
ergy from the field outside the resonator is

U sur
v

U res
v

≈
A2
ν

R∞
P exp�−2κ�ρ − P��dρ
n2

R
P
0 Ai2�f ν

m�ρ��dρ
≈

A2
ν

2n2κumAi 0�−ζq�2
; (9)

from which it quickly follows that U res
v ≫ U sur

v , such that the
majority of the mode energy is seen to lie within the resonator.
Equation (9) holds within the approximation that the field out-
side the resonator decays exponentially; however, similar expres-
sions can also be derived through use of the complete mode
profile [5,48]. Although expressions for the WGM mode profile
and energy given in this section are approximate in nature, we
have numerically verified the accuracy through comparison with

rigorous finite element calculations performed using the method
described in Ref. [49].

3. MODE DISTRIBUTIONS IN THE PRESENCE
OF AN ANISOTROPIC INTERFACE

Interaction of a WGM with a dielectric perturbation gives rise
to a redistribution of the mode profile. This phenomenon has
been well studied for the case of perturbing dielectric and plas-
monic nanoparticles, in addition to consideration of layered
structures [33,35,50,51]. Changes in the properties of morpho-
logical-dependent resonances of a dielectric sphere near a con-
ducting plane have also been considered using a multipolar
expansion [52,53]. Here we consider the mode distribution,
Ev�r; h�, resulting from interaction of a WGM with a semi-in-
finite dielectric substrate whose interface is placed at a distance
h from the surface of a z-cut birefringent resonator and with its
normal directed along x̂ as depicted in Fig. 1(a). The mode
profiles defined in Eqs. (1) and (8) represent the limiting case
h → ∞. Moreover, we consider a uniaxial dielectric substrate
with arbitrary optic axis ĉ and (extra-)ordinary refractive index
(nsube ) nsubo . To account for potential backcoupling into the res-
onator from reflection of the WGM from the interface, we first
consider surface dressing of the WGM amplitude. With this in
hand, we then proceed to derive the mode distribution in both
the resonator interior and exterior, in addition to that in the
infinite half-space of the anisotropic dielectric, using an angular
spectrum approach.

A. Surface Dressed Scattering Amplitudes

To describe excitation of WGMs in an isolated resonator struc-
ture, we can consider an arbitrary incident field, which we re-
present as a superposition of modes:

Ei�r� �
X
v

avVv�r�: (10)

Assuming the modes form a complete orthogonal basis over the
surface, A, of the resonator, it follows that

av �
RR

A V
�
v�r� · Ei�r�dARR

A V
�
v�r� · Vv�r�dA

: (11)

The incident field gives rise to a scattered field, which can again
be represented as a superposition of modes as

Es�r; h → ∞� �
X
v

bvWv�r�; (12)

where the additional parametric dependence on h is introduced
for later convenience. Note that we consider different modes
Vv and Wv due to differing physical requirements at infinity.
Specifically, the scattered modes must satisfy the Sommerfeld
radiation condition, whereas the incident modes have a zero
net energy flow through a closed surface and physically cannot
possess a singularity in the volume of interest. Through appli-
cation of the Maxwell boundary conditions at the surface of the
resonator, the incident and scattered mode coefficients can be
related through the matrix equation b � Na, where N is the
scattering matrix and a � �av� (b � �bv�) is a vector formed by
stacking all the incident (scattered) mode coefficients. For a
spherical resonator, the modes Vv and Wv would correspond
to the vector multipole modes with a radial dependence
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described by the spherical Bessel functions and Hankel func-
tions (of the first kind), respectively. Accordingly, N would be a
diagonal matrix with non-zero elements given by the usual Mie
scattering amplitudes [54]. Modal properties of resonances in
isolated optical resonators, such as the associated resonance
frequencies and linewidths, can then be determined through
analysis of the poles of the scattering matrix N [55]. The field
in the interior of the resonator can similarly be written

Er�r;∞� �
X
v

f vUv�r�; (13)

where the internal mode coefficients can also be related to the
illumination coefficients through f � Za.

Introduction of a dielectric inhomogeneity in the resonator
surroundings, e.g., a dielectric interface, produces two addi-
tional contributions to the total field exterior to the resonator.
First, the incident field Ei is reflected from the inhomogeneity
giving rise to a field Eir . Similarly, the field scattered from the
resonator is reflected, giving rise to a field Esr . Each contribu-
tion can also be decomposed according to [56]

Eir�r; h� �
X
v

c 0vVv�r� and Esr�r; h� �
X
v

d 0
vVv�r�:

(14)

The total field incident upon the resonator is that formed
from the superposition of the incident and the reflected fields,
i.e., Eeff

i � Ei � Eir � Esr , such that the scattered field is

Es�r; h� �
X
v

b 0vWv�r�; (15)

where b 0 � N�a� c 0 � d 0� and b 0, c 0, and d 0 are perturbed
coefficient vectors defined analogously to above. Noting further
that the reflected incident field originates from the incident
field, we may write c 0 � Ja and, similarly, for the reflected
scattered field we have d 0 � Kb 0. Solving for the scattered co-
efficients b 0 in terms of the illumination coefficients a thus
yields

b 0 � �I − NK�−1N�I� J�a≜Neffa; (16)

where I is the identity matrix andNeff is an effective, or dressed,
scattering matrix. Through an analogous argument it also fol-
lows that

f 0 � Z�I� J�KNeff �a≜Zeffa: (17)

Excitation of WGMs is typically achieved through evanes-
cent coupling using a prism or waveguide structure [37], such
that the excitation field is non-negligible over only a small ex-
tent of the resonator surface. Practically, dielectric tuning is also
achieved using an independent dielectric substrate [31,42],
such that the excitation field does not contribute to the total
field at the substrate interface. Accordingly, we can safely ne-
glect the contribution of Eir for our purposes (i.e., we assume
J � O, where O is the null matrix). We briefly note that the
effective scattering coefficient derived above is equivalent to
that which would be found by considering multiple reflections
of the WGM from the dielectric substrate and summing over
all reflected orders.

B. Prism-Induced Mode Coupling

Notably, evaluation of the effective scattering and transmission
matrices described by Eq. (16) and Eq. (17) requires determi-
nation of the complex coupling coefficients, K u;v, that com-
prise K, which we consider in detail in this section. Our
derivation consists of three steps: first we determine the angular
spectrum of the WGM with mode index v � �ν; m; p; q� at the
dielectric interface, second, each constituent plane wave com-
ponent is reflected from the interface by means of generalized
Fresnel reflection coefficients, and finally, we calculate the
mode overlap between the reflected field with the WGM of
order u � �μ; l ; a; b� � �μ; l� (defined analogously to v).

The first step of our derivation requires the angular spec-
trum Ẽν

m�k; h� of a given WGM at the dielectric interface lo-
cated at x0 � R � h. In restricting our attention to large m
WGMs we can legitimately make a small angle approximation,
and with reference to Fig. 1(a), it follows that r̂ ≈ ρ̂ and
θ̂ ≈ −ϑ̂. The symmetry of the TE and TM WGMs therefore
implies that the angular spectrum of the field is of the form
ẼTE
m �k; h� ≈ ẼTE

m �k; h�α̂ and ẼTM
m �k; h� ≈ ẼTM

m �k; h�β̂, where
k � k�sin α cos β; sin α sin β; cos α�, and α and β are the
(complex) polar and azimuthal angles in k space (analogous
to ϑ and ϕ), respectively, as depicted in Fig. 1(b). We note that
the radial polarization component is absent in the far field so as
to ensure transversality of the field. The scalar amplitudes,
evaluated in a given x plane, are given by

Ẽν
m�k; x − R� �

1

4π2

ZZ
∞

−∞
Eν
m�x; y; z�e−i�kyy�kz z�dydz; (18)

where Eν
m�x; y; z� is the complex amplitude of Eν

m�x; y; z� and we
parameterize the amplitudes in terms of the distance x − R of the x
plane from the resonator rim for later convenience. At the dielectric
interface we have x � x0 � �R − P � ρ cos θ� cos ϕ, which for
small θ and ϕ gives ρ ≈ P� h� �P� h�θ2∕2� �R� h�ϕ2∕2.
Together with Eq. (8), we thus find

Eν
m�x0; y; z� ≈ AνHp

�
z

PΘm

�
exp

�
−κh� im

y
R

�

× exp
�
−
1

2

�
y2

Δy2
� z2

Δz2
� z2

P2Θ2
m

��
; (19)

where Δy2 � R∕κ, Δz2 � P∕κ, and we have also used the fact
that R ≫ h and P ≫ h. Equation (19) represents the product of
the WGM mode with a Gaussian coupling window, such that use
of the convolution theorem yields

Ẽν
m�k; h� ≈ Ãν exp

�
−
1

2
f�ky − kyr�2Δy2 � k2zδz2g

�
exp�−κh�

×

"Xp∕2
q�0

p!�−i�p−2q
q!�p − 2q�!

�−2�q
�1� σ2�q Hp−2q

�
kzδz2

PΘm

�#
; (20)

where Ãν � AνδzΔy∕�2π�, δz−2 � Δz−2 � �PΘm�−2, and
σ � Δz∕�PΘm�. From Eq. (20) we see that, as a consequence
of the small angle approximation, the angular spectrum is separable
in ky and kz . Moreover, in the ky direction the angular spectrum is
centered on kyr � m∕R (i.e., the propagation constant of the
associated WGM) and has a width of 1∕Δy ≪ k, whereas in
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the kz direction the spectrum is centered around kz � 0 and has a
width ∼1∕δz ≪ k.

Reflection and transmission of each angular component can
be described through use of generalized Fresnel reflection and
transmission coefficients, a derivation of which can be found in
Appendix A. We note, however, that the transmission coeffi-
cients act on the ŝ � �k × x̂�∕jk × x̂j and p̂ � �k × ŝ�∕jk ×
ŝj field components, i.e., those perpendicular and parallel to
the plane of incidence. It is therefore necessary to express
the α̂ and β̂ field components in terms of the ŝ and p̂ basis.
Upon making the usual small angle approximation we find
ẼTE
m �k; h� ≈ ẼTE

m �k; h�ŝ and ẼTM
m �k; h� ≈ ẼTM

m �k; h�p̂. The re-
flected angular spectrum in each case, denoted Ẽν

m;r�kr ; h�, is
hence

ẼTE
m;r�kr ; h� � ẼTE

m �k; h��rss ŝr � rspp̂r �; (21)

ẼTM
m;r �kr ; h� � ẼTM

m �k; h��rps ŝr � rppp̂r �; (22)

where kr � �−kx; ky; kz � is the reflected wavevector, ŝr � ŝ,
p̂r � �kr × ŝ�∕jkr × ŝj, and the reflection coefficients, rij, are
defined in Appendix A. Accordingly, the reflected field at a gen-
eral position r exterior to the resonator is given by

ETE
m;r�r; h� � ETE;TE

m �r; h�σ̂TEref � ETE;TM
m �r; h�σ̂TMref ; (23)

ETM
m;r �r; h� � ETM;TE

m �r; h�σ̂TEref � ETM;TM
m �r; h�σ̂TMref ; (24)

as follows from reciprocity and where σ̂TEref � −θ̂r , σ̂TMref �
�iasurϕ̂r − bsurρ̂r �, and ρ̂r � ρ̂�θ; π − ϕ� and similarly for θ̂r
and ϕ̂r . The amplitude factors are given by

ETE;TE
m �r; h� �

ZZ
∞

−∞
rssẼTE

m �k; h� exp�ikr · Δr�dkydkz ; (25)

ETE;TM
m �r; h� �

ZZ
∞

−∞
rspẼTE

m �k; h� exp�ikr · Δr�dkydkz ; (26)

ETM;TE
m �r; h� �

ZZ
∞

−∞
rpsẼTM

m �k; h� exp�ikr · Δr�dkydkz ; (27)

ETM;TM
m �r; h� �

ZZ
∞

−∞
rppẼTM

m �k;h� exp�ikr ·Δr�dkydkz ; (28)

where Δr � �x − x0; y; z� � r − x0x̂ is the position vector rel-
ative to the plane of the prism interface. Determination of the
reflected field over the resonator surface requires evaluation of
these integrals for r ∈ A. To do so we make a number of further
approximations. We once more note that ky ≈ m∕R, kz ≈ 0,
Δky ≪ k, and Δkz ≪ k, such that −ikxx ≈ κx. Furthermore
given the small range of ky and kz , we assert that the variation
of the reflection coefficients is small, such that rij�ky; kz� ≈
rij�m∕R; 0� ≜ rij for fi; jg � fs; pg, whereby the reflection co-
efficient can be factored outside of the integral. With these
approximations, Eqs. (25)–(28) essentially reduce to the 2D
inverse Fourier transform of the angular spectra Ẽν

m�k; h�,
with some additional Gaussian factors due to the additional

evanescent decay of the mode. We thus find on the resonator
surface, i.e., �x; y; z� ∈ A, that

Eν;μ
m �x; y; z; h� ≈ AνrijHp

�
z

PΘm

�
exp

�
−2κh� im

y
R

�

× exp
�
−

�
y2

Δy2
� z2

Δz2
� z2

2P2Θ2
m

��
; (29)

where i � s (p) for ν � TE (TM) and similarly for j. With this
association understood, we henceforth adopt the shorthand no-
tation rνμ � rij. The coupling constant can then be evaluated
[cf. Eq. (11)]:

K u;v �
RR

A E
μ�
l �r� · Eν

m;r�r; h�RR
A E

μ�
l �r� · Eμ

l �r�
dA ≜

I �1�u;v

I �0�u

: (30)

We first evaluate the integral I �0�u , which follows easily from
the orthogonality of the Hermite functions as

I �0�u ≈ 2a�1π3∕2A2
μa!RPΘl : (31)

Turning attention to evaluation of I �1�u;v, we first consider the
polarization dependence. Within our small angle approxima-
tion, it can be shown that σ̂ν;�sur · σ̂

μ
ref ≈ 1 for ν � μ � TE

and ≈ k2∕�2k2yr − k2� ≈ �2n2o − 1�−1 for ν � μ � TM and zero
otherwise. Moreover, the narrow windowing function de-
scribed by the exp�−y2∕Δy2� factor means that we need perform
the integration over only a small region of the resonator surface
whereby dA ≈ dydz. Use of Eqs. (19) and (29) then allows us
to express I �1�u;v in the form

I �1�u;v ≈ π1∕2AνAμrνμΔyPΘmI
�2�
ap σ̂

μ;�
sur · σ̂

μ
ref

× exp�−2κh� exp
�
−
�m − l�2
2Δm2

�
; (32)

where Δm2 ≈ 2 m−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n−2

p
. For large m we have Δm ≪ 1,

such that the second exponential in Eq. (32) can be safely
replaced by the Kronecker delta δl ;m, whereby Θl � Θm.
The remaining integral term, I �2�ap , in Eq. (32) can then be
written as

I �2�ap �
Z

∞

−∞
Ha�w�Hp�w� exp�−2τ2w2�dw; (33)

with
ffiffiffi
2

p
τ � PΘm∕δz. It is evident that I

�2�
ap is identically zero

when a and p are of opposite parity, i.e., polar modes of differing
symmetry do not couple as would be expected. When a� p is
even, however, I �2�ap can be evaluated analytically [57],
yielding

I �2�ap � 2
a�p−1

2 s−a−p−1�1 − 2τ2�a�p
2 Γ

�
a� p� 1

2

�

× 2F 1

�
−a; −p;

1 − a − p
2

;
τ2

2τ2 − 1

�
; (34)

where Γ�n� and 2F 1�a; b; c; z� are the Gamma and Gauss hyper-
geometric functions, respectively. Hence, we ultimately arrive at
the desired coupling coefficients:
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K u;v � δl ;m
rνμΔyI

�2�
ap

2a�1πa!R
e−2κh ×

�
1 μ � TE
�2n2o − 1�−1 μ � TM:

(35)

A heat map depicting the interface-induced coupling
strength between modes of different polar orders (a and p)
as described by Eq. (35) is shown in Fig. 2. Note that for ease
of comparison we have also included a further normalization
factor of 2pp! in the data shown in Fig. 2, which arises from
the scaling of the initial mode energy [Eq. (5)]. Inspection
of Eq. (35) and Fig. 2 reveals that a WGM of order p couples
most strongly to the lowest order WGM of the same symmetry
upon reflection, i.e., the fundamental a � 0mode for even p or
the a � 1 mode for odd p. This is a direct consequence of the
finite width coupling window. We reiterate that coupling be-
tween modes of differing symmetry is not possible. Moreover,
as follows from the conservation of angular momentum, cou-
pling between modes with different azimuthal indices (l and m)
is also forbidden. Equation (35), however, does not forbid cou-
pling between modes of differing polarization, albeit, within
our small angle approximation, such polarization mixing stems
from the anisotropy of the substrate and would be absent for an
isotropic prism.

C. Mode Distributions

Having described the reflection of a WGM by a dielectric sub-
strate, we now determine the complete perturbed mode distri-
butions. WGMs with differing mode indices are typically
spectrally distinct in most resonators (with the exception of
a perfectly spherical resonator for which the polar modes are
degenerate), as is reflected in the amplitude of the scattering
coefficients, ηv and ζv, contained in N and Z, respectively.

Consequently, assuming R ≠ P, we can make a single-mode
approximation whereby Eq. (16) simplifies to

b 0v ≈
ηv

1 − ηvK v;v
av ≜ ηv;eff av: (36)

Close to resonance and initially neglecting possible material ab-
sorption in the resonator, the scattering coefficient can be ap-
proximated by the Breit–Wigner line shape [58]:

ηv�ω� � −
γv;rad∕2

γv;rad∕2 − i�ω − ωv�
; (37)

where ωv and γv;rad denote the resonance frequency and radi-
ative linewidth, respectively. The −1 prefactor follows from im-
posing field continuity at the resonator surface. As shown in
Appendix B, material absorption in the resonator reduces
the magnitude of the peak scattering amplitude such that

ηv�ω� � −
γv;rad∕2

�γv;rad � γv;abs�∕2 − i�ω − ωv�
; (38)

where γv;abs is the absorptive linewidth [59]. Similarly, Eq. (17)
simplifies to

f 0
v ≈

ζv
1 − ηvK v;v

av ≜ ζv;eff av: (39)

Combination of Eqs. (36), (38), and (39) shows that, on
resonance, the scattered and internal mode coefficients b 0v
and f 0

v are reduced by a factor of A�h� � �1 − ηvK v;v�−1 ≈
�γv;rad � γv;abs�∕�γv;rad � γv;abs � γv;radK v;v� relative to the un-
perturbed (h → ∞) case. For absorption limited resonators for
which γv;abs ≫ γv;rad, we find A�h� ≈ 1 and, hence, b 0v ≈ bv
and f 0

v ≈ f v. Within the resonant mode approximation, it
therefore immediately follows that the WGM field distribution
within the resonator (ρ < P) in the presence of a dielectric in-
terface is given simply by Ev�r; h� � A�h�Ev�r;∞�, where
Ev�r;∞� is given by Eq. (1). Recalling results from above,
we also find that the field exterior to the resonator (ρ ≥ P,
x < x0) is given by Ev�r; h� � A�h��Ev�r;∞� � Ev;r�r; h��,
where now Ev�r;∞� is given by Eq. (8), and Ev;r�r; h� follows
from Eqs. (23)–(28). Following the same line of argument used
to derive Eq. (29), we can, however, write

Eν
m;r�r; h� ≈

X
μ∈fTE;TMg

rνμ exp�−2κh�Ev�−x; y; z;∞�σ̂μref : (40)

The field transmitted into the volume of the anisotropic sub-
strate x ≥ x0 can be found similarly to the reflected field using
the generalized Fresnel transmission coefficients (Appendix A).
From the preceding analysis in Section 3.B we note that, for
an initially unperturbed WGM of order v, the component of
the perturbed field incident on the prism interface is given by
A�h�Eν

m�x0; y; z;∞�, with a corresponding angular spectrum
A�h�Ẽν

m�k; h�. Upon transmission, each constituent plane wave
generates an ordinary and extraordinary wave in the prism, with
associated wavevectors ko and ke , such that the transmitted field
takes the form

Eν
m�r; h� � A�h�

X
j∈fo;eg

ZZ
∞

−∞
t ijẼν

m�k; h�ĵeikj ·Δrdkydkz ; (41)

where the subscript i � s; p for ν � TE, TM, respectively, tij
(j ∈ fo; eg) are the generalized Fresnel transmission coefficients,

Fig. 2. Interface induced coupling strengths. Heat map of the cou-
pling coefficients between a WGMof polar order p to a WGMof polar
order a, as given by jI �2�ap j∕�2a�p�1p!a!�. A value of τ � 1.2 was as-
sumed. Mode profiles of differing polar orders are shown in the lower
inset, from which different odd–even symmetry classes are apparent.
Strongest coupling of a given WGM order p is to the lowest order
mode of the same symmetry as highlighted by the green boxes; how-
ever, coupling to modes of a different symmetry class is not possible.

2182 Vol. 33, No. 11 / November 2016 / Journal of the Optical Society of America B Research Article



and ĵ � ô and ê are the unit polarization vectors for the ordinary
and extraordinary waves, respectively. The explicit dependence
of t ij, ko, and ke on the incident wavevector k is given in
Appendix A. To simplify Eq. (41) further, we note that expo-
nential terms vary rapidly with ky and kz . In comparison, the
Fresnel coefficients and polarization terms vary weakly within
the limited range of ky and kz over which Ẽν

m is non-negligible.
As such, we make the approximations ô ≈ �ko × ĉ�∕jko × ĉj
and ê ≈ ϵ

↔−1�ke × �ke × ĉ��∕jϵ
↔−1�ke × �ke × ĉ��j, where ko and

ke are the central ordinary and extraordinary wavevectors, respec-
tively, found from Eqs. (A3)–(A7) with ky � kyr and kz � 0.
We hence obtain

Eν
m�r;h��A�h�

X
j∈fo;eg

tij ĵ
ZZ

∞

−∞
Ẽν
m�k;h�eikj;xΔxei�kyy�kz z�dkydkz ;

(42)

where Δx � x − x0, and t ij is defined analogously to rij above.
Once more taking advantage of the small angular spread in ky
and kz we expand the kj;x exponent around ky � kyr and
kz � 0, which to leading order yields

ko;x ≈ �n2o k2 − kykyr�∕�n2o k2 − k2yr�1∕2 ≜ χ�0�o � χ�1�o ky; (43)

ke;x ≈
2k2

D1∕2 �
ky
kyr

�
v � D1∕2

2u
−
2k2

D1∕2

�
≜ χ�0�e � χ�1�e ky; (44)

where D � v2 − 4uw, v � v�kyr ; 0�, and w � w�kyr ; 0� follow
from Eqs. (A5)–(A7) in Appendix A. The constant terms in
Eqs. (43) and (44) can be factored out of the integrals of
Eq. (42) such that the integrals are now of the form of a simple
Fourier transform with respect to the variables ky and kz .
Accordingly, the terms linear in ky can be simply accounted
for by recalling the shift theorem, whereby Eq. (42) becomes

Eν
m�r; h� � A�h�

X
j∈fo;eg

t ij ĵe
iχ�0�j ΔxEν

m�x0; y � χ�1�j Δx; z;∞�;

(45)

where χ�0�j and χ�1�j are defined by Eqs. (43) and (44). We note
that, near the critical angle, the variation of the transmission co-
efficients t ij can vary strongly with ky such that the approxima-
tions leading to Eq. (45) are not valid. In this case, the full
integral expressions of Eq. (41) must be used to account for
Fresnel filtering effects [60,61]. Similar restrictions also apply
to calculation of the reflected field and mode coupling as dis-
cussed in Section 3.B.

4. PRISM-INDUCED RESONANCE
PERTURBATIONS

Shifts in the resonance frequency of modes in a closed cavity
induced by local dielectric perturbations can be described by
the Bethe–Schwinger equation [62]. Moreover, it has recently
been shown (and experimentally verified) that this formula can
also be used to account for mode broadening and radiative
shifts in open resonators if the far-field components are incor-
porated [44]. In Appendix C we briefly present a derivation of
the Bethe–Schwinger equation for open cavities in the presence
of anisotropic dielectric perturbations, which reads

− i
I
S
�δEv ×H�

v � E�
v × δHv� · dS

�
Z
V
�ω 0

v�E�
v · D 0

v �H�
v · B 0

v� − ωv�E�
v · Dv �H�

v · Bv�

− ω�
v�δEv · D�

v � δHv · B�
v��dV ; (46)

where ωv � ωv − iγv∕2 is the complex resonance frequency,
δEv � E 0

v − Ev, Ev and E 0
v are unperturbed and perturbed

electric field distributions, respectively (similarly for the mag-
netic field Hv), Dv � ϵ

↔
Ev, Bv � μ

↔
Hv, and ϵ

↔
and μ

↔
are the

spatially dependent electric permittivity and magnetic permeabil-
ity tensors. The volume V and the associated surface S over
which the integrals in Eq. (46) are taken are shown in Fig. 1
(c) (see also Appendix C). Although ultimately it is our goal
to determine the total resonance shift and linewidth broadening
induced by the presence of a uniaxial substrate relative to the case
in which no substrate is present, the perturbed and unperturbed
modes required to evaluate the Bethe–Schwinger equation can-
not be taken as Ev�r;∞� and Ev�r; h� given above. This can
intuitively be seen, since the left-hand side of Eq. (46) can be
associated with radiative losses in the far field; however, this term
evaluates to zero if the unperturbed mode Ev�r;∞� is chosen
because in the far field jEv�r;∞�j → 0. Physically, such a sce-
nario is incorrect since radiative losses give rise to a mode broad-
ening that is not accounted for. Instead, we consider the change
of the WGM frequency and lifetime assuming that the dielectric
is initially located at a distance h from the resonator and is then
displaced by an infinitesimally small distance, δh, away from the
resonator. Accordingly, after making the further assumptions
described in Appendix C, the Bethe–Schwinger equation takes
the form

δωv � ωv�h� δh� − ωv�h� � −�ωN �1�
v � iN �2�

v �∕N �0�
v ;
(47)

where we have defined the integral terms (assuming δμ � O)

N �0�
v �

Z
V
fE�

v�r; h�ϵ
↔
Ev�r; h� δh�

�H�
v�r; h�μ↔Hv�r; h� δh�gdV ; (48)

N �1�
v �

Z
V δ

E�
v�r; h�δϵ

↔
Ev�r; h� δh�dV ; (49)

N �2�
v �

I
S
fδE�

v�r� ×Hv�r; h� δh�

� E�
v�r; h� δh� × δHv�r�g · dS; (50)

and δEv�r� � Ev�r; h� δh� − Ev�r; h� (and similarly for δH).
V δ defines the volume h ≤ x − R ≤ h� δh for which δϵ

↔ �
ϵ0I − ϵ

↔sub is nonzero. The total change in the complex resonance
frequency induced by the presence of the substrate can then be
found by noting

dω
dh

� lim
δh→0

δω

δh
(51)

such that
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Δωv � ωv�h� − ωv�∞� �
Z

h

∞

dω

dh 0
dh 0: (52)

Each of the N v terms defined in Eqs. (48)–(50) will now be
considered in turn.

Evaluation of N �0�
v . We initially consider evaluation of the

volume integral N �0�
v . Since we consider an infinitesimal shift

of the dielectric substrate, it follows that the volume of the
perturbation in ϵ

↔�r� is much smaller than the total volume
considered. Accordingly, we can approximate N �0�

v as [44]

N �0�
v �

Z
V
fE�

v�r; h�ϵ
↔
Ev�r; h� �H�

v�r; h�μ↔Hv�r; h�gdV ;

(53)

which is 4 times the total energy of the WGM in the presence
of a dielectric substrate placed at a distance h from the resonator
surface. We further approximate the latter by the surface
dressed mode energy of an unperturbed WGM, whereby

N �0�
v � 4jA�h�j2U res

v ; (54)

where U res
v is the mode energy defined by Eqs. (5) and (7).

Evaluation ofN �1�
v . To evaluateN �1�

v we note that within the
domain of integration, V δ, the mode distribution before the inter-
face is displaced is that which is transmitted into the substrate, i.e.,
that defined by Eq. (41). After the interface is shifted the field
distribution is given by A�h� δh��Ev�r� � Ev;r�r; h� δh��.
From Eqs. (23) and (41) it therefore follows that

N �1�
v �A��h�A�h�δh�

Z
V δ

ZZ
∞

−∞

ZZ
∞

−∞
Ẽ�
v�k;h� Ẽv�k 0;h�δh�

×

2
4 X
j∈fo;eg

t ij exp�ikj ·Δr�ĵ
3
5�

δϵ
↔

×

2
4 X
j 0∈fs;pg

δij 0 exp�ik 0 ·Δr�e−ik 0
xδhĵ 0�rij 0 exp�ik 0

r ·Δr�eik 0
xδh ĵ 0r

3
5

×dkydkzdk 0ydk 0zdV (55)

where i � s; p for ν � TE;TM as previously discussed. By
rearranging the order of integration, the integrals over y and z
can be evaluated immediately by noting that

R
∞
−∞ exp�i�k 0y −

ky�y�dy � 2πδ�k 0y − ky� and similarly for kz. Consequently, inte-
gration over k 0y and k 0z can also be simply performed, yielding

N �1�
v � 4π2jA�h�j2

X
j∈fo;eg

X
j 0∈fs;pgZ

x0�δh

x0

ZZ
∞

−∞
jẼv�k; h�j2t�ij�δij 0e−�ik

�
j;x�κ�Δx ĵ�δϵ

↔
ĵ 0

� rij 0e
−�ik�j;x−κ�Δxe−2κδh ĵ�δϵ

↔
ĵ 0r �dkydkzdx � O�δh�; (56)

where we have expandedA�h� δh� ≈A�h� � δhdA∕dh�…,
used Eq. (20) to write Ẽv�k 0; h� δh� � Ẽv�k 0; h� exp�−κδh�,
and made the substitution −ikx ≈ κ. The integration over x
can also be performed analytically such that we obtain

N �1�
v ≈ 4π2jA�h�j2

X
j∈fo;eg

X
j 0∈fs;pg

ZZ
∞

−∞
t�ijjẼv�k;h�j2

× �δij 0X�
j ĵ

�δϵ
↔
ĵ 0 � rijX−

j e−2κδh ĵ
�δϵ

↔
ĵ 0r �dkydkz ; (57)

where we have dropped the O�δh� term and

X	
j �

Z
x0�δh

x0
exp�−�ik�j;x 	 κ��x − x0��dx; (58)

� 1 − exp�−�ik�j;x 	 κ�δh�
ik�j;x 	 κ

: (59)

Evaluation of N �2�
v . We begin by separating N �2�

v into
two distinct integrals: one over the hemisphere in the half-space
x ≥ x0 (in the prism) and another over a hemisphere in the
half-space x < x0 (in the host medium), which we denote
by N �2>�

v � N �2<�
v , respectively. In the dielectric substrate we

can use Eq. (41) and write

δEv�r� � A�h�
X
j∈fo;eg

ZZ
∞

−∞
�tijẼv�k; h�eikj ·Δrĵ

× fexp�−�ikj;x � κ�δh� − 1g�dkydkz � O�δh�: (60)

We note, however, that we have chosen our integration surface
such that RV → ∞ (see Appendix C). Consequently, through
application of the method of stationary phase [63], Eq. (60)
becomes

lim
jΔrj→∞

δEv�r� � −2πiA�h�
X
j∈fo;eg

tijkj;x Ẽv�k; h�

× fe−�ikj;x�κ�δh − 1g e
ikjΔr

Δr
ĵ� O�δh�; (61)

whereΔr � jΔrj and kj � jkjj. Further notingωμ0H̃v�k; h� �
k × Ẽv�k; h� and that in the far field dS � Δr̂dS � k̂jdS, we
have for a fixed direction

lim
jΔrj→∞

�δEv�r� ×H�
v�r�� · k̂j

� 4π2

ωμ0

jA�h�j2
Δr2

X
j∈fo;eg

X
j 0∈fo;eg

t ijt�ij 0kj;xkj 0 ;x jẼv�k; h�j2

× fexp�−�ikj;x � κ�δh� − 1gĵ × �kj 0 × ĵ 0� · k̂j � O�δh�; (62)

where we have also restricted to propagating waves (Im�kj;x � � 0)
since evanescent components do not contribute to the far field.
Using the identity a × �b × c� � b�a · c� − c�a · b� yields

ĵ × �kj 0 × ĵ 0� · k̂j � δjj 0kj�1 − �ĵ · k̂j�2�; (63)

where ô · k̂j � 0, but ê · k̂j ≠ 0 due to the anisotropic nature
of the substrate. It can easily be shown that limjΔrj→∞�δEv�r�×
H�

v�r�� · k̂j� limjΔrj→∞�E�
v�r�×δHv�r�� · k̂j, and that the

surface element is given by dS � Δr2 sin ϑdϑdϕ �
Δr2dkydkz∕�kjkj;x�, whereby it follows that
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N �2>�
v ≈

8π2

ωμ
jA�h�j2

X
j∈fo;eg

Z Z
Im�kj;x ��0

�kj;x jtijj2jẼv�k; h�j2

× fe−�ikj;x�κ�δh − 1gf1 − �ĵ · k̂j�2g�dkydkz : (64)

In the half-space x < x0 a similar analysis can be performed
as that presented for x ≥ x0. Critically, for large resonators, the
majority of the plane wave components in the medium sur-
rounding the resonator are evanescent and do not contribute
in the far field. From the law of reflection it also follows that
the reflected plane wave components of the WGM are also
evanescent in nature, such that we can conclude that
N �2<�

v ≈ 0.
Complex resonance shifts, Upon substituting Eqs. (54),

(57), and (64) into Eq. (47), we note that the jA�h�j2
factors cancel from the leading terms in both the numerator
and denominator. Upon taking the limit in Eq. (51) we thus
find

dω
dh

� −
1

U res
v
�ωN �1�

v �h� � iN �2�
v �h��; (65)

where

N �1�
v �h� � π2

X
j∈fo;eg

X
j 0∈fs;pg

ZZ
∞

−∞
t�ijjẼv�k; h�j2

× �δij 0 ĵ�δϵ
↔
ĵ 0 � rij ĵ

�δϵ
↔
ĵ 0r �dkydkz ; (66)

N �2�
v �h� � −

2π2

ωμ

X
j∈fo;eg

Z Z
Im�kj;x ��0

kj;x�ikj;x � κ�

× jtijj2jẼv�k; h�j2�1 − � ĵ · k̂j�2�dkydkz : (67)

Finally, noting jẼv�k; h�j2 � jẼv�k; 0�j2 exp�−2κh�, we can
evaluate Eq. (52) to obtain

Δωv�h� �
exp�−2κh�
2κU res

v
�ωN �1�

v �0� � iN �2�
v �0��; (68)

from which the shift in the (real) resonance frequency and
the change in the linewidth follow as Δωv � Re�Δωv� and
Δγv � −2 Im�Δωv�, respectively. Equation (68) constitutes
the key result of this paper and will form the basis of the
remaining analysis.

5. NUMERICAL RESULTS AND DISCUSSION

To study the resonance perturbations induced by a (uniaxial)
dielectric substrate we now apply Eq. (68) to a number of sce-
narios. In all calculations we consider a lithium niobate
(LiNbO3) resonator supporting WGMs at λ ≈ 1550 nm,
whereby the ordinary and extraordinary refractive indices are
no � 2.213 and ne � 2.138, respectively [64]. Furthermore,
the major and minor radii of the resonator are taken to be
R � 2.1 mm and P � R∕9, respectively, and the optic axis
of the resonator is assumed to be parallel to its axis of rotation
(i.e., z cut). Accordingly, the fundamental �p � 0; q � 1� TE
and TM resonances at λ ≈ 1550 nm, as found using the
dispersion relation given in [43], are of order m � 18152

and 18790, respectively. The associated amplitude decay
lengths are κ−1 ≈ 130 and 125 nm, respectively.

A. Anomalous Radiative Shifts

Before considering the more general scenario of uniaxial sub-
strates, we first analyze the resonance perturbations induced by
an isotropic substrate. The solid curves in Fig. 3(a) show the
calculated resonance shift Δωv∕�2π� (top plot) and mode
broadening Δγv∕�2π� (bottom) in megahertz (MHz) that re-
sult when a dielectric substrate of varying refractive index, nsub,
is brought from infinity into contact with the resonator
(h � 0). As described by Eq. (68), the total complex frequency
shift derives from two distinct contributions. Specifically, the
N �1�

v term in Eq. (68) relates to work done in polarizing
the dielectric and to material absorption therein (the latter is
assumed to be zero in all calculations). Moreover, theN �1�

v term
is of identical form to the usual perturbation integral used to
study reactive resonance shifts [33,62]. The second N �2�

v term,
however, is usually omitted in conventional treatments of cavity
perturbations but is required when describing open cavities and
relates to coupling of the WGM into the far field [44], which
can be further facilitated by introduction of the substrate. The
individual contributions from these terms are also indicated in
Fig. 3(a) by the dashed and dashed–dotted curves, respectively.

As the refractive index of the substrate increases from unity,
it is seen from Fig. 3(a) that the WGM resonance frequency is
redshifted. For small refractive indices, the transmitted field in
the substrate is purely evanescent, such that the redshift orig-
inates solely from the work done to generate a material polari-
zation, which can equivalently be considered an increase in the
effective refractive index, and hence the optical path length, of
the WGM propagating in the resonator. Accordingly, no addi-
tional radiative losses are introduced into the system and no
mode broadening is seen. As nsub increases further, so too does
the magnitude of the redshift (due to the larger resulting index
contrast), until the refractive index of the substrate is approx-
imately equal to the effective refractive index of the unper-
turbed WGMs, i.e., nsub ≈ neff (albeit not exactly due to the
nonzero width of the WGM angular spectrum). Once this con-
dition is met, a maximum redshift results. We note that by
virtue of the anisotropy of the LiNbO3 resonator assumed
in our calculations, the effective refractive index for TE and
TM WGMs differs (neff ≈ ne and no, respectively) and, hence,
so too does the position of the maximum redshift.

For yet larger values of nsub, the magnitude of the redshift
starts to decrease. Physically, the qualitative change in the fre-
quency shift arises because, when nsub ≳ neff , the field transmit-
ted into the substrate is no longer purely evanescent, but can
contain significant (or even only) propagating components.
Consequently, the total shift derives from competition between
the redshifts arising from theN �1�

v term and blueshifts from the
radiative N �2�

v term. For (predominantly s-polarized) TE
modes, theN �1�

v contribution is constant regardless of substrate
refractive index, since the change in the material polarizability is
precisely compensated for by the change in transmission into
and reflection from the substrate. The differing dependence
of the Fresnel coefficients on the substrate refractive index
for incident p-polarized TM modes, however, means that

Research Article Vol. 33, No. 11 / November 2016 / Journal of the Optical Society of America B 2185



the resulting redshift arising from material polarization weakly
increases with nsub. In contrast, theN �2�

v resonance shift, which
arises from interference between the WGM and the additional
radiated field induced by shifting the position of the substrate
(or equivalently a back action from the radiation continuum
[44]) is toward higher frequencies. Ultimately, when the sub-
strate refractive index is large enough, the radiation interaction
can dominate the resonance shift, giving rise to an anomalous
net blueshift of the WGM relative to the case when no sub-
strate is present. This transition from a redshift to a blueshift
occurs at much lower substrate refractive indices for TE modes
than for TM modes due to the differing behavior of N �1�

v for
nsub ≳ neff . Practically, the substrate refractive index required to
observe blueshifts of TMmodes is unphysically large within the
optical domain. Although we shall not consider this case in any
detail in this paper, it is worth noting that WGM blueshifts can
also be observed when the refractive index of the medium sur-
rounding the resonator is greater than that of the substrate, as
follows from the δϵ

↔
dependence of Eq. (66), or equivalently the

change in sign of the material polarizability as follows from the
Clausius–Mossotti relation.

As noted above, when the refractive index of the substrate is
larger than the effective refractive index seen by the WGM in
the unperturbed resonator, light couples to radiative, i.e.,

propagating waves in the substrate. Energy is carried by these
propagating waves to infinity such that they constitute a loss
mechanism. Accordingly, once coupling of the WGM to these
propagating modes is possible, the linewidth of the resonance
increases as seen in Fig. 3(a). Briefly noting that the relative
fraction of the mode energy that is contained exterior to the
resonator [Eq. (9)] is smaller for TM modes as compared to
TE modes, it would be expected that the resulting mode
broadening is also smaller for TM modes. This expectation
is indeed borne out in calculations, as apparent from Fig. 3(a).
Furthermore, we observe that as we increase the substrate
refractive index, the coupling rate increases to a maximum
value, before slowly decreasing at larger refractive indices.
This behavior can be understood by first noting that the
Fresnel transmission coefficients decrease with increasing
substrate refractive index (i.e., there is stronger reflection at
the interface). Larger substrate refractive index, however, also
implies that the kx component of the transmitted wavevector
increases (i.e., the transmitted wave propagates at a smaller
angle to the surface normal), such that the projection factor
appearing when considering energy conservation at the inter-
face also increases. These two opposing effects give rise to the
maximum seen in Fig. 3(a).

Fig. 3. Effects of substrate birefringence. (a) Dependence of the resonance shift Δωv∕�2π� (top) and mode broadening Δγv∕�2π� (bottom) in
MHz of TE (blue) and TM (green) WGMs supported in a LiNbO3 resonator induced by bringing an isotropic substrate of varying refractive index
nsub into contact. Total resonance modifications (solid lines) derive from both a near-field material polarizationN �1�

v (dashed) and a far-field radiative
N �2�

v (dashed–dotted) contribution. (b) Variation of the (top) mode shift (in MHz) and (bottom) broadening (in MHz) of TE (left) and TM (right)
WGMs with substrate birefringence Δnsub � nsube − nsubo . The optic axis of the substrate is assumed to be parallel to that of the resonator as depicted
in the insets. Gray squares indicate material properties of some common (birefringent) substrates: magnesium fluoride, MgF2 (labeled MF);
crystal quartz, SiO2 (Q); sapphire, Al2O3 (S); lithium tetraborate, Li2B4O7 (LT); barium borate, BaB2O4 (BB); lithium niobate, LiNbO3

(LN); calcite, CaCO3 (C); zinc oxide, ZnO (ZO); gallium nitride, GaN (GN); barium titanate, BaTiO3 (BT); proustite, Ag3AsS3 (P); zinc ger-
manium phosphide, ZnGeP2 (ZGP); rutile, TiO2 (R); and silicon, Si (Si). Dashed vertical lines depict the ordinary and extraordinary refractive
indices of the resonator. Refractive index data were taken from [64–75].
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Extension of the calculations to the case of uniaxial sub-
strates shows similar trends as to the isotropic case, as shown
in Fig. 3(b). Specifically, the resonance shift Δωv∕�2π� (top
row) and mode broadening Δγv∕�2π� (bottom row) in
MHz are shown as a function of the extraordinary refractive
index of the substrate nsube and the substrate birefringence
Δnsub � nsube − nsubo . The optic axis of the substrate is assumed
to be parallel to that of the resonator, i.e., ĉ � ẑ. Although a
weak dependence of the TE shift and broadening on the sub-
strate birefringence results from the cross-polarization mixing
described in Eqs. (23) and (24), this effect is found to be several
orders of magnitude smaller than the copolarized terms, such
that only variation of the resonance properties with the sub-
strate extraordinary index, and not Δnsub, is seen in Fig. 3(b),
mirroring that found for the isotropic case. When ĉ � ẑ,
TM modes also effectively see an isotropic substrate with
refractive index nsubo . As such, the resulting functional depend-
ence of the shifts and broadening exhibits a linear displace-
ment with substrate birefringence for fixed nsube . This effect
could, for example, be exploited for differential tuning of TE
and TMWGMs, if the substrate has a large linear electro-optic
coefficient and the resonator itself does not show strong electro-
optic effects.

Anisotropy of the substrate also plays an important role in
dictating the WGM shifts when the optic axis is varied, as shown
in Fig. 4. Letting ĉ � �sin αc cos βc ; sin αc sin βc ; cos αc �,
where αc and βc are the polar and azimuthal angles of the optic
axis [see Fig. 4(a)], respectively, we have calculated the resulting

resonance shift when a magnesium fluoride (MgF2; ne � 1.382,
no � 1.371), LiNbO3 (ne � 2.138, no � 2.213), or rutile
(TiO2; ne � 2.683, no � 2.432) prism is brought into contact
with the LiNbO3 resonator from infinity, as a function of
�αc ; βc�. These three specific materials were selected since both
the ordinary and extraordinary refractive indices ofMgF2 (TiO2)
are smaller (larger) than those of the LiNbO3 resonator, whereas
the choice of a LiNbO3 substrate also allows the intermediate
regime to be analyzed. Numerical results are shown in Fig. 4(b).

Considering first theMgF2 substrate, we note that, since all
waves transmitted into the substrate are evanescent, the reso-
nance shift originates only from the work done in polarizing the
medium as before. Accordingly, since MgF2 is positively bire-
fringent (nsube > nsubo ), if the optic axis is rotated from the ẑ axis
toward the x–y plane (αc is increased), the magnitude of the
shift of the TE mode decreases, because the effective refractive
index seen by the WGM also decreases. Conversely, since the
TM WGM is predominantly polarized in the x–y plane, a
larger magnitude resonance shift results under the same rota-
tion of ĉ. Rotation of the optic axis around the ẑ axis through
an increase of βc also gives rise to a modulation in the resonance
shift of the TM mode through the same mechanism. The larg-
est magnitude shift therefore results when the optic axis is
perpendicular to the field component, with the greatest ampli-
tude in the near field. For TM modes this corresponds to
βc � 0, i.e., the radial direction at the contact point between
the resonator. No variation in the TE resonance frequency with
βc is, however, seen, since the mode is polarized along the axis

Fig. 4. Optic axis and modal dependence of resonance shifts. (a) Coordinate system defining orientation of the optic axis ĉ of the substrate.
(b) Resonance shifts Δωv∕�2π� (in MHz) induced in TE (top row) and TM (bottom) WGMs upon bringing a magnesium fluoride, MgF2
(left column); lithium niobate, LiNbO3 (middle); or rutile, TiO2, substrate into contact with a LiNbO3 resonator, as a function of the orientation
of the substrate optic axis ĉ � �sin αc cos βc ; sin αc sin βc ; cos αc �. Note that for the substrate refractive indices considered, only redshifts are
predicted. (c) Schematic of the typical hierarchy of resonances shifts for WGMs of fixed �m; ν� but differing polar and radial index �p; q�. A similar
hierarchy is also seen for modes of (approximately) fixed wavelength, but differing �m; p; q�.
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of rotation. For a negatively birefringent substrate
(nsube < nsubo ), such as barium borate, these trends would be re-
versed, e.g., the TE mode would experience smaller redshifts as
αc was increased to π∕2, as opposed to larger shifts. We also
note that the modulation of the resonance shift due to the varia-
tion of the material polarizability increases with the birefrin-
gence of the substrate. A rough order of magnitude estimate
of the relative modulation can be obtained by considering
the relative change in the Clausius–Mossotti polarizability
when evaluated using the ordinary and extraordinary refractive
indices. Typically, for the materials considered in this work,
variation of only a few percent (or equivalently ≲1 MHz) were
seen, as also evidenced by the data in Fig. 4.

Although the dependence of the resonance shifts for WGMs
resulting from the presence of a TiO2 substrate are qualitatively
similar to those for aMgF2 substrate, the physical origin is quite
different. This is apparent since both TiO2 and MgF2 are pos-
itively birefringent materials, yet the observed trends are in
opposition to each other. Since both the ordinary and extraor-
dinary refractive indices of TiO2 are larger than that of the res-
onator, the field in the substrate is composed of propagating
waves. As was discussed above, as the optic axis of the
substrate is varied, so the effective refractive index of the
substrate seen by the WGM also varies. However, with refer-
ence to Fig. 3(a), when in the propagating transmitted wave
regime (nsube;o ≳ neff ), the relative change in the resonance
frequency is dominated by the radiative shift term (N �2�

v ).
Mathematically speaking, since j∂Re�iN �2�

v �∕∂ĉj >
j∂Re�ωN �1�

v �∕∂ĉj when nsube;o ≳ neff , the optic axis dependence
of the resonance shift is dominated by the radiative component
of the Bethe–Schwinger equation. Importantly, negative
frequency shifts can still be observed [as in the TiO2 data in
Fig. 4(b)] if jRe�ωN �1�

v �j > jRe�iN �2�
v �j. The modulation of

the resonance frequency from the radiative interaction corre-
sponds to several tens of percent, or equivalently to
≲10 MHz, depending on the material. Considering TiO2

for definiteness, we note that as the optic axis is rotated from
the ẑ axis toward the x–y plane (αc is increased) such that the
effective refractive index seen by a TE mode decreases, coupling
of the WGM to the far field is reduced due to lower transmis-
sion. Consequently, the corresponding blueshift from the radi-
ative back action is also reduced such that in total a larger
redshift is observed [see Fig. 4(b)]. The converse again holds
for TM modes. Interestingly, in the frequency shifts calculated
for TiO2, a weakly singular feature can also be discerned, which
occurs when the central wavevector of the output extraordinary
beam is parallel to the optic axis of the substrate. This special
case will be discussed further below.

When a LiNbO3 substrate is used to tune the resonance
frequency a mixed behavior is seen. Due to the choice of optic
axis of the resonator, the refractive index experienced by a TE
WGM in the substrate is always larger than the effective refrac-
tive index in the resonator. Accordingly, a propagating field is
transmitted into the substrate and the dependence on the optic
axis is dictated by the variation in N �2�

v , as was the case for
TiO2 (we note the opposing trends between LiNbO3 and
TiO2 is a result of the opposite signature of the birefringence).

TM modes, however, couple predominantly to evanescent
waves in the substrate, and, hence, the dependence on the optic
axis is governed by N �1�

v , as was found with MgF2.
In the calculations presented thus far we have considered

only the resonance shifts induced in WGMs for which p �
0 and q � 1. Naturally, a quantitative difference in the induced
shift is seen for modes of differing polar and radial order (but
fixed m and ν). Under typical conditions, the hierarchy of shifts
is that shown schematically in Fig. 4(c). Specifically, as the ra-
dial order increases, so the magnitude of the shift falls slightly.
Modes of differing polar order, however, form two separate lad-
ders, corresponding to modes of the same parity (i.e., odd or
even symmetry). Within each individual ladder, smaller mag-
nitude shifts are seen for higher values of p, because for such
higher order modes a greater proportion of the mode lies out-
side the Gaussian coupling window and hence does not interact
significantly with the substrate. Deviations from the mode or-
dering shown in Fig. 4(c) do, however, occur when the shifts
are close to zero. It should also be noted that since modes of
fixed m have been considered here, modes of differing (p, q)
have different resonant frequencies. Nevertheless, if WGMs
of approximately fixed wavelength are chosen (and m varied
accordingly), a similar ordering is also found.

B. Selective Coupling

In addition to the resonance shifts discussed in the previous
section, introduction of a substrate can give rise to coupling
of the WGM into the far field and hence to mode broadening.
Intuitively, this phenomenon can be understood since coupling
to propagating waves in the substrate introduces additional loss
channels for the WGM, yielding a shorter resonance lifetime.
Since propagating waves are only excited when the effective re-
fractive index of the substrate is larger than that seen by the
WGM in the resonator, we now consider only the effect of ei-
ther a LiNbO3 or TiO2 substrate. Figure 5(a) shows the mode
broadening determined using Eq. (68) as a function of the ori-
entation of the optic axis of the substrate. Anisotropy of the
substrate implies that a given WGM can couple to both ordi-
nary and extraordinary polarized waves in the substrate, such
that the mode broadening results from the net effect of both
channels. Accordingly, we also show the individual contribu-
tions from the ordinary and extraordinary beams in the leftmost
columns of Fig. 5(a).

Initially considering a TiO2 substrate, we again note that as
αc is increased to π∕2 the refractive index seen by TE (s-po-
larized) WGMs decreases. Lower transmission into the far field
hence results such that the mode broadening is reduced.
Moreover, as the optic axis is rotated, the ordinary and extraor-
dinary polarization vectors also rotate, such that the ordinary
and extraordinary waves play complementary roles. For in-
stance, when ĉ � ẑ, the TE mode couples to only extraordinary
waves in the substrate; however, if αc � π∕2, a strong ordinary
component can also be excited. Proportionally, the relative
strength with which TE modes couple to ordinary waves varies
with βc . A weakly singular point is seen in the plots of Fig. 5(a)
corresponding to the case where ĉ � ke∕jkej. When this con-
dition is met there is a minimum (maximum) in the refractive
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index experienced by the central angular component of the
extraordinary wave when propagating in a positively (nega-
tively) birefringent material. Furthermore, the polarization vec-
tor ê is undefined for this angular component, such that a plane
wave component propagating with wavevector parallel to ĉ does
so as a pure ordinarily polarized wave. Nevertheless, for an out-
coupled WGM the extraordinary beam still carries a finite (al-
beit relatively small) amount of power to the far field due to the
finite width of the incident angular spectrum. For an isotropic
substrate, the ordinary and extraordinary wavevectors are equal,
and the complementarity of the corresponding beams is exact

in the sense that a decrease in the energy carried by the ordinary
beam, resulting from a change in ĉ, is compensated for by an
increase of equal magnitude in that of the extraordinary wave.
Quantitative differences arise for anisotropic substrates, how-
ever [as seen in Fig. 5(a)], due to the differing dependence
of the generalized Fresnel transmission coefficients and since
ko and ke are not parallel. Similar, albeit reversed, arguments
apply for a TM WGM coupled to a TiO2 substrate. When
broadening of WGMs of differing polar and radial orders is
considered, a similar hierarchy to that for resonance shifts is
again found [see Fig. 4(c)].

Fig. 5. Mode broadening and outcoupled beam parameters. (a) Mode broadening Δγv∕�2π� (in MHz) of TE (first and third rows) and TM
(second and fourth rows) WGMs upon bringing a TiO2 (top two rows) or LiNbO3 (bottom two rows) substrate into contact with a LiNbO3

resonator, as a function of the orientation of the optic axis ĉ of the substrate. The total mode broadening (right column) results from losses carried by
an outcoupled ordinary (left) and extraordinary (middle) beam. Note that apparent mode narrowing in the individual ordinary and extraordinary
channels in the bottom row (arising from theN �1�

v term) is artificial, since narrowing in one channel is compensated by an equal and opposite loss in
the other, such that the net loss is dictated solely byN �2�

v and only mode broadening is seen. (b) Schematic defining the angular direction and angular
width of propagating beams coupled into the substrate. (c) Scalar profiles Ẽv�k; 0� of outcoupled beams of different polar order p. Scale bars
correspond to the FWHM of the fundamental p � 0 mode in the ky and kz directions, i.e., 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
∕Δy and 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
∕Δz, respectively.
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When a LiNbO3 substrate is brought into close proximity
to a WGM resonator, markedly different behavior can be seen.
As noted in the previous section, a TEWGM always couples to
propagating waves in the substrate, yielding similar behavior to
that seen for a TiO2 substrate (allowing for differences arising
from the sign of the birefringence of each material). In contrast,
a TM mode couples mostly to evanescent waves except for
within a restricted range of ĉ corresponding to that bounded
by the gray dashed circle in Fig. 5(a). Hence, only relatively
weak broadening of the TM mode results. Dependence of
the partial mode broadening, originating from the ordinary
and extraordinary waves individually, on ĉ is, in contrast to
the propagating wave case, dominated by the nonradiative
component (N �1�

v ) of the Bethe–Schwinger equation, since
the radiative losses are so low. Counterintuitively, it is seen that
an apparent mode narrowing can occur in either the ordinary or
extraordinary channel. Importantly, net mode broadening of
TM WGMs perturbed by a LiNbO3 substrate is nevertheless
governed by the radiative loss (N �2�

v ) term as per physical in-
tuition, since the near-field (N �1�

v ) contributions from the ordi-
nary and extraordinary waves are equal and opposite in
magnitude and, therefore, precisely sum to zero. We briefly
note that the sudden transition frommode broadening to mode
narrowing (and vice versa) seen at βc � π∕2 in the individual
loss channels is an artifact of the definition of the (extra-)ordi-
nary polarization and wavevectors and is not of physical signifi-
cance, especially considering there is no net effect from both
channels. Given that a LiNbO3 substrate produces significant
broadening of TE, but not TM, modes we note that this sce-
nario corresponds to polarization-selective coupling of WGMs,
as has recently been experimentally demonstrated [42].
Maximum extinction ratios, that is to say the relative coupling
rates, are achieved when ĉ lies in the x–y plane (αc � π∕2),
specifically along the x̂ axis (βc � 0). In this case, extinction
ratios ∼1.6 × 104 (or equivalently ∼42 dB) are predicted cor-
responding to a strong degree of selectivity.

C. Geometric Properties of Outcoupled Modes

Finally, in this section we briefly consider the geometric proper-
ties of outcoupled propagating ordinary and extraordinary
beams in a uniaxial substrate when it is brought close to a
WGM resonator. Specifically, we seek expressions for the out-
put angle of the beams and the angular widths as defined in
Fig. 5(b), which are important parameters in mode identifica-
tion [76]. Similar considerations for the emission patterns of
WGMs supported in spheroidal resonators coupled using iso-
tropic prisms were given by Gorodetsky and Ilchenko [36];
however, here we provide the corresponding expressions for
a uniaxial prism. Most importantly, it should be noted that
use of a uniaxial prism means that the angular components
of the WGM each undergo double refraction, such that two
beams are output in different directions and with differing
polarization states. Depending on the magnitude of the sub-
strate birefringence and optic axis orientation, these two beams
can, however, partially or completely overlap.

We begin by first writing the wavevector of a general angular
component in the form k � k�sin α cos β; sin α sin β; cos α�
(see Fig. 1). Noting that the transverse wave components of

each angular component are conserved across the substrate in-
terface, we can deduce the output angle in the x–y plane (βj) by
considering ky � kyr � m∕R � kj sin αj sin βj for j ∈ fo; eg.
It immediately follows that

sin βj �
m

kjR sin αj
: (69)

The output angles in the z direction require a slightly more
detailed analysis. Within the Gaussian window, the scalar
mode profile incident on the interface is an oscillatory
function such that it follows that, except for the trivial case
of p � 0 for which αj � π∕2, two distinct peaks located
symmetrically about kz � 0 are expected in the far field
[as shown in Figs. 5(b) and 5(c)]. As an approximation we
first consider the kz dependence of the incident angular spec-
trum neglecting the effect of the Gaussian coupling window,
which can be easily shown to be given by the Hermite func-
tions. To first order, the output beams correspond to the
outermost peaks of the Hermite functions, which can be well
approximated as

exp�−u2∕2�Hp�u� ∼ 2�2p�1�∕4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π�p − 1�!

p
Ai�t�; (70)

where t � 21∕2p1∕6��2p� 1�1∕2 − u� and u � PΘmkz .
Accordingly, the peaks are found at angles given by

cos αj ≈
1

kjPΘm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� 1

p
−

ζ 01
21∕2p1∕6

�
; (71)

where ζ 01 � 1.0188 is the first zero of the derivative Airy
function Ai 0�−ζ 0� � 0. In the far field, the Gaussian coupling
window is accounted for by a convolution of the Hermite
functions with a Gaussian (as discussed in Section 3). The
asymmetry of the outermost peak of the Hermite functions,
however, gives rise to an additional angular displacement in
the final output beam, whereby we numerically find that

cos αj ≈
1

kjPΘm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� 1

p
−

ζ 01
21∕2p1∕6

�
� 1

4

�
κ

P
� 1

P2Θ2
m

�
1∕2

:

(72)

Determination of the angular widths of the output
beams follows by making the approximation Δky∕Δβj ≈
j∂ky∕∂βjα�αj ;β�βj

(and similarly for Δkz∕Δαj). Within this
approximation we find

Δα2j �
k
k2j

�
δp;0

nffiffiffiffiffiffi
PR

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p

P sin2 αj

�
; (73)

Δβ2j �
k

ffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p

k2j R sin2 αj cos
2 βj

: (74)

Although similar in form to the expressions of Gorodetsky
and Ilchenko, Eqs. (69), (73), and (74) possess slight
differences due to differing definitions of the angles and the
shape of resonators considered. Equation (72), however, differs
from that of [36] due to the method of derivation, although we
find Eq. (72) gives good numerical agreement with the posi-
tions of the peaks. We emphasize, however, that the output
beam profiles shown in Fig. 5(c) are further modulated by
the Fresnel transmission coefficients. Due to the narrow
width of the angular spectrum, the associated variation of the
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transmission coefficients is small. However, if coupling to either
ordinary or extraordinary propagating waves in the substrate is
close to cutoff, then strong variation can occur, resulting in
so-called Fresnel filtering [60,61] and a truncated output beam
profile.

6. CONCLUSIONS

In this paper we have theoretically studied the properties of
WGMs in a z-cut uniaxial axisymmetric resonator placed in
close proximity to a planar dielectric substrate, such as a prism.
To do so, we first extended the approximate unperturbed mode
profiles provided by Breunig et al. [43] to account for the open
nature of the resonator and the vectorial nature of the under-
lying electromagnetic fields. Upon establishing an analytic
angular spectrum representation of WGMs [Eq. (20)], we pro-
ceeded to study prism-induced coupling to other WGMs and
rigorously proved that coupling between modes of differing
azimuthal order and parity was forbidden. Within a resonant
mode approximation, we subsequently derived expressions for
the WGM profiles in the presence of a substrate, including re-
flection from and transmission through the interface [Eqs. (40),
(42), and (45)]. We have furthermore presented an analytic
formalism capable of quantitatively predicting the resonance
shifts and mode broadening that result from bringing a planar
dielectric substrate from infinity into the evanescent field of a
WGM [Eq. (68)]. Our analysis was based on a generalization of
the Bethe–Schwinger perturbation equation, which accounts
for far-field radiative contributions and is hence suitable for
application to open cavities [44]. Importantly, through use
of generalized Fresnel reflection and transmission coefficients,
our theory can account for uniaxial substrates with an arbitrar-
ily oriented optic axis and, moreover, is applicable to disk-,
toroidal-, and ellipsoidal-shaped resonators, therefore extending
alternative coupling theories found in the literature [37] to
previously unconsidered geometries.

To complement our theoretical developments, extensive
numerical examples were also presented. Supporting experi-
mental results will be discussed in forthcoming publications.
Competing redshifts and blueshifts were found to dictate
the total change in resonance frequency. The former redshift
is well known and derives from the work done in polarizing
the dielectric substrate. However, the second less familiar effect
originates from interference between the unperturbed and per-
turbed radiative component of the WGM in the far field, or a
so-called radiative back action. Relative dominance of each ef-
fect was found to be influenced by both the mode polarization
and the refractive index of the perturbing substrate relative to
that of the resonator, since the latter determines whether
WGMs couple to evanescent or propagating waves in the sub-
strate. For both TE and TMWGMs, maximum redshifts occur
when the refractive index of the perturbing substrate is approx-
imately equal to that of the resonator. However, for larger sub-
strate indices, the radiative contribution begins to dominate,
leading not only to anomalous blueshifts, but also to significant
mode broadening. An optimal regime, with respect to the
substrate refractive index, in which maximum coupling can
be achieved was also observed. Coupling of WGMs to the
far field by means of a uniaxial prism, however, can manifest

itself through two distinct channels, namely, those of ordinary
and extraordinary propagating waves. Orientation of the optic
axis plays a central role in governing the relative losses between
these channels. Exceptionally, when the resonator and substrate
are fabricated from the same (birefringent) material, this
dependence renders polarization-selective coupling with a high
extinction ratio possible. Optimal selective coupling is found
when the optic axis of the resonator and substrate are chosen
to lie parallel to the resonator’s symmetry axis (z cut) and
perpendicular to the substrate interface (x cut), respectively.
Finally, we have discussed double refraction of a WGM into
ordinary and extraordinary waves propagating in a nearby
anisotropic substrate and, moreover, have provided analytic
formulas [Eqs. (69) and (72)–(74)] for their geometrical
properties under general conditions.

APPENDIX A: REFLECTION AND TRANSMISSION
AT A BIREFRINGENT INTERFACE

In this appendix we derive the generalized Fresnel reflection
and transmission coefficients of a plane wave in an isotropic
medium incident upon a planar uniaxial interface whose surface
normal is directed along x̂. The incident wave is assumed to
have a complex wavevector, k � �kx; ky; kz � (where �x; y; z� is
a fixed coordinate system as used in the main text), and can be
decomposed into ŝ � �k × x̂�∕jk × x̂j and p̂ � �k × ŝ�∕jk × ŝj
polarized components which are perpendicular and parallel to
the plane of incidence, respectively. We further define the unit
vectors ĥ � ŝ, which are parallel to the interface and
perpendicular to the plane of incidence, and ĝ � x̂ × ĥ, which
lies in the plane of incidence and is parallel to the interface. The
incident wave gives rise to a reflected beam with wavevector
kr � �−kx; ky; kz �, which can be decomposed into ŝr � ŝ
and p̂r � �kr × ŝ�∕jkr × ŝj polarized components. Within a
uniaxial medium, with arbitrary optic axis ĉ � �cx ; cy; cz �, both
ordinary and extraordinary wave components are generated
with the associated unit polarization vectors (corresponding
to the electric field vector):

ô � �ko × ĉ�∕jko × ĉj (A1)

ê � ε
↔−1�ke × �ke × ĉ��∕jε

↔−1�ke × �ke × ĉ��j; (A2)

where

ε
↔ �

0
@ c2x�n2e − n2o �� n2o cxcy�n2e − n2o � cxcz�n2e − n2o �

cxcy�n2e − n2o � c2y �n2e − n2o �� n2o cycz�n2e − n2o �
cxcz�n2e − n2o � cycz�n2e − n2o � c2z �n2e − n2o �� n2o

1
A

is the permittivity tensor and no (ne) are the (extra)ordinary
refractive indices of the dielectric substrate (note that in
the main text these are denoted by nsubo and nsube , respectively).
The corresponding wavevectors are ko � �ko;x ; ky; kz � and
ke � �ke;x ; ky; kz �, where we note that the ky and kz compo-
nents are conserved quantities across the interface (as per
Snell’s law). Letting ĉ � �cos χc ; sin χc cos ψ c ; sin χc sin ψ c �,
the x components of the wavevectors are given by [77]

ko;x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o k2 − k2y − k2z

q
; (A3)
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ke;x �
�
v �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 4uw

p �
∕�2u�; (A4)

and

u � n−1e sin2 χc � n−1o cos2 χc ; (A5)

v � �ky cos ψ c � kz sin ψ c ��n−2e � n−2o � sin 2χc ; (A6)

w � �ky cos ψ c � kz sin ψ c �2�n−2e cos2 χc � n−2o sin2 χc�
� n−2e �−ky sin ψ c � kz cos ψ c �2 − k2: (A7)

The incident, reflected and transmitted electric fields can then
be written (omitting the exp�−iωt� time dependence) as

Ei � �As ŝ� App̂� exp�ik · r�; (A8)

Er � �Bs ŝ� Bpp̂r � exp�ikr · r�; (A9)

Et � Coô exp�iko · r� � Ce ê exp�ike · r�; (A10)

where As;p, Bs;p, and Co;e are amplitude coefficients and ω is the
optical frequency. From Maxwell’s equation iωμH � ∇ × E,
we can also express the associated magnetic fields in the form

ωμHi � �As�k × ŝ� � Ap�k × p̂�� exp�ik · r�; (A11)

ωμHr � �Bs�kr × ŝ� � Bp�kr × p̂r�� exp�ikr · r�; (A12)

ωμHt � Co�ko × ô� exp�iko · r� � Ce�ke × ê� exp�ike · r�:
(A13)

Enforcing continuity of the components of the electric and
magnetic fields tangential to the interface (i.e., E · ĝ�, E · ĥ�,
H · ĝ�, and H · ĥ�) yields four equations:

As � Bs � Coô · ĥ
� � Ce ê · ĥ

�; (A14)

kx�As − Bs� � Co�ko × ô� · ĝ� � Ce�ke × ê� · ĝ�; (A15)

kx�Ap − Bp� � Coô · ĝ� � Ce ê · ĝ�; (A16)

−Ap − Bp � Co�ko × ô� · ĥ� � Ce�ke × ê� · ĥ�; (A17)

where kx � k · x̂ is the x component of k. We can define gen-
eralized reflection and transmission coefficients according to [78]

Bs � rssAs � rpsAp; Bp � rspAs � rppAp; (A18)

Co � t soAs � tpoAp; Ce � t seAs � tpeAp; (A19)

which can be found by solving Eqs. (A14)–(A17), yielding

rss �
Mo

−Ne
− −Me

−No
−

Mo�Ne
− −Me�No

−
; rpp �

Mo�N e� −Me�No�
Mo�Ne

− −Me�No
−
; (A20)

rps �
Mo�Me

− −Mo
−Me�

Mo�Ne
− −Me�No

−
; rsp �

No
−Ne� −No�N e

−

Mo�Ne
− −Me�No

−
; (A21)

t so �
2Ne

−

Mo�Ne
− −Me�No

−
; t se �

−2No
−

Mo�Ne
− −Me�No

−
; (A22)

tpo �
−2Me�

Mo�Ne
− −Me�No

−
; tpe �

2Mo�
Mo�Ne

− −Me�No
−
; (A23)

and

Mo
	 � ô · ĥ� 	 �ko × ô� · ĝ�∕kx; (A24)

Me
	 � ê · ĥ� 	 �ke × ĝ� · ĝ�∕kx; (A25)

No
	 � −�ko × ô� · ĥ�∕k 	 kô · ĝ�∕kx; (A26)

Ne
	 � −�ke × ê� · ĥ�∕k 	 kê · ĝ�∕kx : (A27)

We note that Eqs. (A20)–(A27) are equivalent to those pre-
sented in [77] for propagating waves but differ for evanescent
waves, since we normalize unit vectors such that u · u� � 1 as
opposed to u · u � 1. We elect to use this normalization
convention since it maintains the physical definition of the
Fresnel coefficients as the amplitude ratio of the respective field
component [79].

APPENDIX B: BREIT–WIGNER LINE SHAPE
WITH MATERIAL ABSORPTION

We start by considering the scattering amplitude of a given
WGM, which near resonance takes the form

ηv�ω� � −
γv;rad∕2

γv;rad∕2 − i�ω − ωv�
≜ −

1

1 − iβ�ω� (B1)

when absorption in the resonator is neglected. To account for
the effect of absorption, we must consider the dependence
of β�ω� on the complex refractive index n � n� iκ.
Following [58], we perform a Taylor expansion of β�ω; n�
around the resonance frequency ωv and the real part of the
refractive index n, whereby

β�ω� ≈ �ω − ωv�∂ωβ�ωv; n� � iκ∂nβ�ωv; n� (B2)

and where β�ωv; n� � 0 has been used. Substituting Eq. (B2)
into Eq. (B1) yields

ηv�ω� ≈ −
1

1� κ∂nβ�ωv; n� − i�ω − ωv�∂ωβ�ωv; n�
: (B3)

Noting that ∂ωβ�ωv; n� � 2∕γv;rad, we observe that
Eq. (B3) also possesses a Breit–Wigner line shape, albeit with
a modified linewidth of γtot � γv;rad�1� κ∂nβ�ωv; n�� �
γv;rad � γv;abs. We can hence deduce κ∂nβ�ωv;n��
γv;abs∕γv;rad, whereby Eq. (B3) yields Eq. (38) of the main text.

APPENDIX C: ANISOTROPIC
BETHE–SCHWINGER EQUATION

The eigenmodes of an open system can be written in the
form Ev�r; t� � Ev�r� exp�−iωt �, where ω � ω − iγ∕2 is the
complex eigenfrequency that describes both the real resonance
frequency ω and the resonance lifetime 1∕γ. The associated
magnetic field Hv�r; t� can be similarly defined. The eigenm-
odes must satisfy Maxwell’s equations, which, allowing for
anisotropic media, reduce to

∇ × Ev � iωBv and ∇ ×Hv � −iωDv; (C1)

where D � ε
↔
E, B � μ

↔
H, and ε

↔ � ε
↔�r� and μ

↔ � μ
↔�r� are

the electric permittivity and magnetic permeability tensors,
respectively, that describe the cavity and its surroundings.
Modification of the dielectric environment results in a modified
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set of eigenmodes E 0
v�r; t� � E 0

v�r� exp�−iω 0t � (and similarly
for H 0

v), which must also satisfy an analogous set of equations
to Eq. (C1) with the replacements Ev → E 0

v, Hv → H 0
v,

ε
↔�r� → ε

↔ 0�r�, and μ
↔�r� → μ

↔ 0�r�. Subtracting these sets of
equations yields

∇ × δEv � iω 0B 0
v − iωBv; (C2)

∇ × δHv � −iω 0D 0
v � iωDv; (C3)

where δEv � E 0
v − Ev (and similarly for δHv). Now, by form-

ing the inner products H�
v · ∇ × δEv and E�

v · ∇ × δHv, using
the vector identity A · �∇ × B� � B · �∇ × A� − ∇ · �A × B�,
and subtracting the resulting expressions, we obtain

iω��δEv ·D�
v � δHv ·B�

v� −∇ · �H�
v × δEv −E�

v × δHv�
� iω 0�E�

v ·D 0
v �H�

v ·B 0
v� − iω�E�

v ·Dv �H�
v ·Bv�: (C4)

Integrating over a spherical volume of radius RV and use of
Gauss’s theorem gives Eq. (46) in the main text, from which
both the resonance shift δω � ω 0 − ω and mode broadening
δγ � γ 0 − γ can be extracted by rewriting Eq. (46) as

δω � �−�δω� ω�N �1�
v − iN �2�

v

� ω�N �3�
v � ω�N �4�

v − N �0�
v ��∕N �0�

v ; (C5)

where we have let ε
↔ 0�r� � ε

↔�r� � δε
↔�r� (and similarly for μ 0)

and have defined the integral terms

N �0�
v �

Z
V
E�
v ε
↔
E 0
v �H�

v μ
↔
H 0

vdV ; (C6)

N �1�
v �

Z
V
E�
vδε

↔
E 0
v �H�

vδμ
↔
H 0

vdV ; (C7)

N �2�
v �

I
S
�δEv ×H�

v � E�
v × δHv� · dS; (C8)

N �3�
v �

Z
V
δEv ε

↔�E�
v � δHvμ

↔�H�
vdV ; (C9)

N �4�
v �

Z
V
E�
v ε
↔
Ev � δH�

v μ
↔
HvdV : (C10)

After application of Gauss’s theorem, we let RV → ∞, such
that the surface integral in N �2�

v is taken at infinity.
Practical WGM resonators are typically fabricated from ma-

terials for which the imaginary part of the permittivity is
small. Although absorption can still play an important role
in determining the linewidth of WGMs, it is nevertheless safe
to assume that ε is real when evaluating the integrals in
Eqs. (B3)–(C10). Noting that the electric permittivity tensor
ε is also symmetric and assuming ω ≈ ω�, i.e., restricting
attention to high-Q resonances it then follows that
ω�N �3�

v �ω�N �4�
v −N �0�

v ��0. Making the further assumption
that δω ≪ ω and δγ ≪ ω, Eq. (46) simplifies to Eq. (47).
Validity conditions of the Bethe–Schwinger equation are also
discussed in Refs. [44] and [62].
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