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SUPPLEMENTARY INFORMATION 1. NEAR FIELD ENHANCEMENTS

In this section we detail finite element simulations of gold nanorods positioned in close

proximity to a dielectric microsphere immersed in an aqueous environment. Supplementary

Table 1 lists a number of the associated simulation parameters. The approach we adopt is

similar to that first proposed by Kaplan et al. [1] for a microtoroid geometry, however, here

we make suitable adaptations such that microsphere resonators can be considered. In short,

by exploiting symmetry considerations and a priori knowledge of whispering gallery mode

profiles, a reduced simulation volume is defined from which the associated eigenmodes are

found using the COMSOL Multiphysics (v4.3a) eigensolver.

1. Simulation geometry

In a biosensing context, realistic microspheres typically have a radius of a few tens of

microns. Such a large size proves prohibitive for finite element analysis, since the associated

Parameter Name Value

Microsphere radius, a 30 µm

Microsphere refractive index, nr 1.45367

Unperturbed WGM wavelength, λ0 780.911 nm

Unperturbed WGM polarisation TE

Unperturbed WGM Q factor 7.66× 105

WGM mode index, l 340

Host (water) refractive index, nh 1.32979 + i 1.395× 10−7

Nanoparticle-surface distance, d 7 nm

Nanorod diameter D 12 nm

Nanorod aspect ratio L/D 3.5

Gold refractive index np Palik [2]

Polar slice angle 10◦

Supplementary Table 1. Assorted simulation parameters used in calculation of near field enhance-

ment factors.
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simulation domain is too large for standard desktop computers. Importantly, however,

a number of observations allows the simulation domain to be greatly reduced to a more

tractable size.

Firstly, it is noted, that we are only interested in the study of whispering gallery modes

(WGMs) supported within a microsphere. Given the bound nature of these modes, the

majority of the mode energy is concentrated near the surface of the microsphere, such that

the centermost region of the microsphere interior is of little interest. Likewise, the evanescent

field penetrates only a short distance into the host medium, such that only a small region

of the exterior need be considered. Similarly, for fundamental WGMs, as principally used

in sensing applications, modes are confined to lie in (or near) the equatorial plane of the

microsphere, allowing further reductions.

Secondly, the symmetry of the WGMs allows further reductions in simulation volume.

For an unperturbed whispering gallery mode of order l, a strong degree of rotational sym-

metry about the polar axis is present. Consequently, simulation of the full 2π range of the

azimuthal angle is not required. Instead, an angular slice need only be considered, with

appropriate boundary conditions chosen (discussed below) to replicate the full nature of the

whispering gallery mode. In the presence of a nanoparticle (NP), however, the situation

requires additional thought, since the presence of the nanoparticle disturbs the mode and

breaks the azimuthal symmetry. Crucially, the interaction between the nanoparticle is per-

turbative in nature, such that the mode regenerates quickly as you move further from the

position of the nanoparticle, in turn meaning only a small segment of the sphere need be

considered as for the unperturbed case. In so doing it is vital to ensure the angular slice is

wide enough to ensure the nanoparticle has negligible effect at the boundaries, as discussed

more fully in the work of Kaplan et al. [1]. Given these observations the simulation domain

can be reduced from a full spherical volume, to that of a tesseroid as shown in Supplementary

Figure 1.

Simulation errors introduced by using this tesseroidal domain can be reduced to below

that of the inherent numerical error (e.g. through finite discretisation of the simulation vol-

ume), if the simulation is setup correctly. Selection of the appropriate boundary conditions

and geometrical parameters are hence important in simulations, so as to ensure that the

reduced simulation domain accurately reflects the full physical system as closely as possible.

We thus detail appropriate choices here. It should be noted that simulations were per-
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Supplementary Figure 1. (a) Schematic of the reduced tesseroidal simulation volume showing

the division into distinct domains for the microsphere, host medium, perfectly matched layer and

nanoparticle. (b) Boundary conditions for external faces of the simulation volume. (c) Cross-section

of equatorial plane of simulation volume, showing regions with and without a nanoparticle.

formed using the commercial COMSOL Multiphysics v4.3a software package (in particular

the RF module eigensolver), such that here we adopt the parlance matching that found in

the COMSOL documentation.

WGM resonators are inherently lossy, with energy escaping, for example, via radiation

losses from the resonator. To account for such losses in our simulations a perfectly matched

layer (PML) [3] is introduced at the outer face of the tesseroid (see Supplementary Figure 1),

with an external scattering boundary condition (SBC). Presence of the PML, moreover, al-

lows the Q factor of each eigenmode to be extracted, which can be used to help verify correct

operation of the simulation by comparison to solution of the exact resonance condition [4],

and to allow easy identification of WGMs from the myriad of eigenmodes output by the

COMSOL eigensolver. When considering the azimuthal faces of the tesseriodal volume, we

recall, that we wish to simulate a rotationally symmetric scenario. Accordingly we may
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choose to select either a perfect electric conductor (PEC) or perfect magnetic conductor

(PMC) boundary condition for the azimuthal faces (Supplementary Figure 1(b)). So doing,

has the effect of mirroring the simulated volume. For physically meaningful results, there-

fore, the boundaries should be placed at the nodes (PEC) or anti-nodes (PMC) of the WGM.

We elect to use the latter. Furthermore, note that the angular opening in both the azimuthal

and polar directions should be an integer fraction of the full 2π rotation. Additionally, given

output modes from the COMSOL eigensolver are only meaningful in a relative sense for

a single mode (i.e. absolute values between different simulations can not be directly com-

pared) due to the normalisation methods used in COMSOL, a segment with and without a

NP must be considered in a single simulation as depicted in Supplementary Figure 1(c). All

remaining boundaries are then set to PECs since the field on these boundaries are negligible

by construction.

The NP considered in our simulations was a gold nanorod, modeled as a prolate circular

cylinder with hemispherical end caps as shown in Supplementary Figures 1 and 2. To max-

imise coupling with the WGM, the NP was aligned parallel to the unperturbed WGM field

at the position of the NP, which for a TE mode implies the long axis of the NP is perpen-

dicular to the equatorial plane. Given the symmetry of this arrangement a PEC boundary

bisecting the NP, as depicted in Supplementary Figure 1(a), can also be introduced.

2. Material properties, meshing and solver properties

Throughout all simulations a 30 µm radius microsphere was taken and assumed to be

made from fused silica with a refractive index of 1.45367 and immersed in water with a

refractive index of 1.32979 + i 1.395 × 10−7 (as found by interpolation of data from Hale

and Querry [5]). For a 30 µm radius microsphere radiation losses are dominant, however

we include water absorption for completeness. Finally the NP was assumed to be made

of gold, with refractive index data interpolated from that of Palik [2]. To include material

dispersion in the COMSOL simulations correctly, it was necessary to define a second electric

wave equation node to the solver configuration so as to override the material properties

within the domain of the NP, to those defined by the appropriate interpolation functions.

With regards to meshing, a swept mesh was used to discretise the domain of the micro-

sphere and within the PML. Other domains were meshed using a free tetrahedral discreti-
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Supplementary Figure 2. Line profiles of unperturbed (dashed green) and perturbed (solid blue)

l = 340 TE whispering gallery mode field distribution for a 30 µm radius microsphere. Line profiles

were taken along the yellow dashed line shown in Supplementary Figure 3. Field amplitude is

plotted to improve visibility of the unperturbed mode.

sation. Conversion between meshes was performed on adjoining interfaces by insertion of

diagonal edges. Finer meshes were used in the vicinity of the NP to allow greater spatial

resolution in the resulting fields. The nanorod was placed a distance of 7 nm from the

microsphere surface to mitigate meshing problems.

3. Results

To verify correct operation of finite element simulations an unperturbed fundamental

whispering gallery mode was found (i.e. the eigenmode found without a NP present) and

characterised. Cross-sections of the l = 340 TE mode considered can be seen in Supplemen-
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Supplementary Figure 3. Polar yz- (top) and equatorial xy- (bottom) cross-sections of the intensity

distributions of an unperturbed (left) and perturbed (middle) whispering gallery mode. Intensity

distributions have been normalised to the peak modal intensity for the unperturbed case. Note

that color scales have been limited to range from zero to unity, to emphasise the perturbation

to the mode distribution. Intensity distributions hence appear saturated near the nanoparticle.

Strong intensity enhancements (right) are however seen in the close vicinity of the nanoparticle.

In all panels white dashed (solid) lines denote the microsphere (nanorod) surface. Yellow dotted

lines correspond to line profiles shown in Supplementary Figure 2.

tary Figure 3. The resonance wavelength and associated Q factor were determined to be

782.038 nm and 7.20× 105 respectively compared with the theoretical values of 780.911 nm

and 7.663 × 105. Upon introduction of the nanorod, the whispering gallery mode distri-

bution is perturbed locally, with strong near fields seen in the vicinity of the nanorod (see

Supplementary Figure 3). Near field intensity enhancements are maximal at the ends of
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the nanorod with enhancements of over 800 seen for L/D = 3.5, however strong enhance-

ments of ∼ 60 are also seen at more central regions of the rod. It is noted that the latter

figure is comparable to that achievable with near-resonance a nano-shell particle geometry

[6]. In addition to the distributions shown in Supplementary Figure 3, line profiles of the

unperturbed and perturbed modes along the direction joining the microsphere and nanorod

centers are shown in Supplementary Figure 2. For clarity Supplementary Figure 2 plots

field amplitude as opposed to intensity, however, clear enhancements are seen. Noting the

peak amplitude in the presence of the NP is ∼ 4, as compared to the amplitude at the

same position without the NP of ∼ 0.25, the maximum intensity enhancement is ∼ 64 as

corresponds to those shown in Supplementary Figure 3.

SUPPLEMENTARY INFORMATION 2. NANOPARTICLE AND DNA INDUCED

RESONANCE SHIFTS

1. Background theory

In this section we consider the effect of binding of a NP or DNA molecule to a WGM

resonator. We consider a spherical WGM resonator with electric permittivity εr immersed

in a host medium of electric permittivity εh and assume the NP can be described by the

permittivity tensor ε↔p(r) which in general can depend on spatial position e.g. for composite

nanoshell particles. It should be noted that for generality we allow the NP to possess a

non-scalar permittivity as is applicable to anisotropic NPs.

Reactive resonance shifts in WGMRs have been extensively studied in the literature

and have been derived using both a perturbation based approach as well as more rigorous

Mie scattering calculations [6, 7]. For simplicity, in this work we shall consider the first

order perturbation result [7] whereby it was shown that the change, ∆ω in WGM resonance

frequency, ω, is given by (with appropriate generalisation to allow for anisotropic NPs)

∆ω

ω
≈ −1

2

∫
Vp
E†(r)

[
ε↔p(r)− εhI

↔]
E′(r)dr∫

V
ε(r) |E(r)|2 dr

= −1

2

∆U

U
, (1)

where I
↔

is the 3 × 3 identity matrix, † denotes the Hermitian adjoint, Vp (V ) denotes the

volume of the NP (all space), E (E′) denotes the unperturbed (perturbed) mode distribution

respectively and ε(r) is the permittivity distribution before introduction of the NP, such that
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ε(r) = εr for r within the WGMR and εh otherwise. In the derivation of Teraoka and Arnold

[7] permittivities were assumed to be real, such that the resonance frequency ω in Eq. (1) was

real. It can, however, be shown that Eq. (1) is applicable for absorbing media (with complex

ε) if ω = ω0 − iγ0/2 is taken as a complex resonance frequency, with the real (imaginary)

part defining the resonance frequency (linewidth). We note that γ0 can account for all losses

mechanisms in the bare cavity, such as radiation (curvature) losses, absorption and surface

scattering. The shift of the (real) resonance frequency then quickly follows and is given by

∆ω0

ω0

≈ −1

2

(
Re

[
∆U

U

]
+

1

2Q0

Im

[
∆U

U

])
, (2)

where for high Q resonances Q0 = ω0/γ0 is the quality factor the WGM resonance, whilst

∆γabs
ω0

≈
(

Im

[
∆U

U

]
− 1

2Q0

Re

[
∆U

U

])
. (3)

This latter equation describes the additional broadening of the WGM due to the presence of

an absorbing NP (hence motivating the choice of subscript), as can be seen by noting that

∆γabs → 0 as Im[ ε↔p]→ 0. We note that for high Q WGMRs the second term in both Eqs. (2)

and (3) can usually safely be ignored, as will be done henceforth. We will also henceforth

assume, for simplicity that εh and εr ∈ R, for the purposes of calculating perturbative shifts

and broadening, however we note that the effect of absorption on the natural resonance

linewidth can (and should) be included within γ0. In contrast, no such restriction is made

for the permittivity of the NP, ε↔p(r), since we seek to describe interaction of the WGM with

metallic NPs.

To determine the frequency shift ∆ω we note that application of an electric field on an

NP induces an additional material polarisation P(r) = ε0( ε
↔

p− εhI
↔

)E(r), within the particle

volume. Since ε0 ε
↔

pE
′(r) = ε0εhE(r) + P(r) Eq. (2) can be written in the form:

∆ω0

ω0

≈ −1

2
Re

[ ∫
Vp
E†(r)P(r)dr∫

V
ε0ε(r) |E(r)|2 dr

]
. (4)

Following [8] this can be rewritten as:

∆ω

ω0

= −1

4
ε0εh

Re[E†(rp)α
↔E(rp)]

U
. (5)

where α↔ denotes the (complex) excess polarisability tensor of the NP, where the tensorial

nature of the polarisability can derive from either an optical anisotropy of the NP (i.e. via ε↔p)
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or through shape anisotropy (which is of more interest for our case) [4]. U can be interpreted

as the total energy initially stored in the WGM, whilst Re[∆U ] ≈ Re[
∫
Vp
E†(r)P(r)dr]/2 is

the energy used to polarise the NP. It should be noted that derivation of Eq. (5) is done in

the quasi-static limit, such that the NP is assumed to experience a uniform field E(rp).

In addition to absorption losses described by Eq. (3), the presence of a NP also introduces

scattering losses from the WGMR, which have not yet been accounted. When multiple

broadening mechanisms, such as curvature (radiation) losses, scattering losses, and heating

losses etc, are present

Q−1 = Q−1rad +Q−1abs +Q−1sca + · · · (6)

or equivalently γ = γ0 + ∆γabs + ∆γsca + · · · . To determine the scattering losses we can

again consider the NP as a dipole scatterer, with induced dipole moment PT =
∫
Vp
P(r)dr.

We further recall the definition of the quality factor of a resonance viz.

Q = ω0
Energy stored

Power loss (per second)
= ω0

U

P
(7)

Under our approximation of a dipole scatterer we can assert that the power scattered is

given by the well known Larmour’s formula viz.

P =
nhω

4
0|PT |2

12πε0c3
=
n5
hω

4
0ε0

12πc3
|α↔E(rp)|2 (8)

where nh is the refractive index of the immersion medium, hence yielding

∆γsca =
n5
hω

4
0ε0

12πc3
|α↔E(rp)|2

U
. (9)

It should be noted that this classical derivation is consistent with a more rigorous quantum

treatment [9]. Finally, an additional loss term ∆γcc term should also be included, if the

coupling strength is greater than the damping rate of the resonator i.e ω0/Q0 < 2∆ω. In

this regime, scattering from a particle bound to the microresonator couples light appreciably

into a (initially degenerate) counter-propagating WGM [10], such that the amplitude of

the original and counter-propagating WGM are roughly equal. When the particle induced

splitting (= 2∆ω) of the two resulting standing wave eigenmodes of the resonator, is ∼

ω0/Q0 the splitting can not be resolved, but gives rise to an apparent broadening ∆γcc [11].

Naturally, when ω0/Q0 � 2∆ω mode splitting is observed [9, 12].
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2. Plasmonic nanorod

We consider first the perturbation induced by a gold nanorod of dimensions L = 42 nm

and D = 12 nm and deduce the theoretical maximum resonance shift and linewidth change

to a WGM with resonance wavelength ∼ 780 nm. To maximise observable resonance shifts

we assume that the NP binds on the equatorial plane of the microsphere and binds such

that its orientation is parallel to the mode polarisation. This arrangement ensures the

WGM couples only to the longitudinal plasmon resonance in the NP. To determine the

polarisability of the nanorod, Waterman’s extended boundary condition method (also known

as the null field method) was used to determine the T -matrix of the particle. The longitudinal

dipole contribution, TE
1,0, can then be extracted and used to determine the longitudinal

polarisability of the NP according to

α1,0 = −4π
3i

2k3n3
h

TE
1,0 (10)

where k = 2π/λ = ωc. T-matrix calculations were verified by calculating the scattering

spectrum of an isolated nanorod as a function of incident wavelength, yielding a resonance

frequency of ∼ 740 nm. The calculated scattering spectrum was compared with that cal-

culated in COMSOL Multiphysics for a plane wave incident upon a nanorod in water and

found to be in good agreement. Furthermore, the determined resonance wavelength was

found to be in agreement with that quoted (756 nm) on the nanorod data sheet supplied

by the manufacturers. As a slight digression, it should be noted, that by use of the polar-

isability of Eq. (10), Eq. (5) (and subsequent) are valid beyond the quasi-static limit, since

the polarisability derived from the T -matrix accounts fully for retardation effects across the

particle. Noting further that if we adopt the position of the scatterer rp as the origin of

a new coordinate frame, in which the incident field is decomposed into a multipolar basis,

the only non-zero contribution at the NP position is the electric dipole mode [13]. The field

strength E(rp) therefore corresponds to the electric dipole mode of the illumination field in

the shifted coordinate system. We can thus conclude that Eq. (5) (and subsequent) are valid

within a dipole approximation and is thus valid for scattering from NPs exhibiting strong

electric dipole resonances.

Determination of the maximum shift and linewidth broadening also requires solution of

the well-known resonance condition for spherical cavities [4]. Solutions were found using root

finding algorithms seeded with asymptotic solutions for high order Mie modes [14]. Mode
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a b

Supplementary Figure 4. Step heights for nanorod bindings extracted from a. ∆λ and b. ∆FWHM

traces of TE polarized WGMs excited in microspheres with different radius. Lines are theoretical

predictions, taking into account a possible angle of the nanorods long axis with respect to the

microcavity surface of ∼ 0◦ (solid line), ∼ 30◦ and ∼ 90◦ (dashed lines).

profiles and energy were then calculated using standard expressions for the Mie modes (see.

e.g. [6]) and substituted into the perturbative equations detailed above. The results of

this calculation are shown in Figure 2 of the main text for TM modes. Similar calculations

were also performed for TE modes and are shown in Supplementary Figure 4. Importantly,

TM WGM modes have non-zero field vectors in both the radial and azimuthal direction.

Consequently, assuming the particle binds with its long axis parallel to the microsphere

surface it is not possible to fully couple to the longitudinal resonance. The full tensorial

polarisability, which in the nanorod’s principle frame of reference was calculated to be

α↔ =


1.143 + 0.01495i 0 0

0 1.143 + 0.01495i 0

0 0 27.58 + i10.64

× 10−23 m3, (11)

must then be used in Eq. (5). Resonance shifts for different nanorod binding angles can be

determined by applying a suitable tensor rotation to the polarisability [6].
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3. DNA strands

We now consider the resonance shift induced by a DNA strand. In particular we consider

a strand of 22 bases, each of which is of dimension 3.4 Å× 10 Å. To model a single strand

we adopt the Rayleigh-Gans approximation and consider it as a dielectric prolate ellipsoid

of refractive index np = 1.5 of total length 3.74 nm and diameter 1 nm. To calculate the

induced resonance shift we consider Eq. (5), however we now assume that the local intensity

has been enhanced by a factor Λ and further assume the long axis of the dielectric DNA

ellipsoid to lie parallel to the local field, such that

∆ωDNA

Re[αDNA
1,0 ]

= Λ
∆ωNP

Re[αNP
1,0 ]

(12)

in the best case scenario (and similarly for line broadening). In reality, it should be noted that

due to the finite extent of a bound biomolecule, Λ in Eq. (12) would represent an effective

near field enhancement determined from the ratio of the integrated intensities (over the

volume of the biomolecule) with and without the nanorod integrated. Given the small size of

a single DNA strand, we neglect this effect and assume the binding position rp lies within the

maximum of the plasmonic hotspot. The unenhanced resonance shift at this position for a

microsphere of radius 30 µm and TE WGM of order l = 340 were calculated as ≈ 0.00025 fm.

Again the line broadening upon binding of a DNA to the nanorod can also be determined,

albeit here we note that ω0/Q0 � 2∆ω, such that we may neglect the ∆γcc term, yielding

negligible broadening. Assuming an enhancement factor of Λ ≈ 800, as determined from the

full near field calculations described above, ultimately yields a maximum expected resonance

shift of 0.2 fm. This is smaller than those observed experimentally by approximately one to

two orders of magnitude. This discrepancy is attributed to two main factors. Firstly, size

dispersion of the nanorods implies that the plasmonic resonance of each binding nanorod

lies at a different wavelength. The relative detuning of each plasmonic nanorod with respect

to the WGM in turn varies such that the local near field intensity enhancement achievable

differs between each bound particle. To quantify this effect, the aspect ratio of the nanorod

was varied in a series of COMSOL simulations (see above) and the maximum intensity

enhancement for each case was determined. The results are shown in Supplementary Figure 5

by the cross markers. The solid blue line in Supplementary Figure 5 depicts a numerical fit of

the experimental data adopting the lineshape given in the work of Zuloaga and Nordlander
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Supplementary Figure 5. Calculated near field intensity enhancement for a nanorod placed 7 nm

from a WGM resonator as a function of nanorod aspect ratio L/D. Inset shows intensity en-

hancements in the vicinity of a nanorod (of aspect ratio L/D = 3.5) with a 1 nm radius spherical

protrusion. White solid line depicts the surface of the nanorod.

[15]. It can be seen that for aspect ratios of ∼ 3.8, an enhancement of ∼ 3000 can be

achieved.

Secondly, in the work of Dantham et al. [16] surface roughness was demonstrated to

give rise to large discrepancies between theoretical predictions and experimental results.

Similar effects are also believed to play a role in our case, since some degree of surface

roughness is unavoidable given current day fabrication techniques. To quantify the additional

enhancements arising as a consequence of roughness, we introduce a small 1 nm radius

protrusion to the surface of the nanorod in a similar vein to [16]. For a nanorod of aspect

ratio 3.5, a local intensity enhancement of over 5400 fold is seen observed as shown in the

inset of Supplementary Figure 5. In combination it is thus seen that both surface roughness

and nanoparticle size dispersion can easily account for the discrepancy described above.
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SUPPLEMENTARY INFORMATION 3. THIOL REACTION

The thiol reactions are performed in ultrapure distilled water, filtered with 0.1 µm mem-

brane filters, pH is adjusted with HCl to pH ∼ 3, 0.5 M NaCl, 0.02 % w/w SDS. Reaction

time is on the order of 10 to 30 minutes. A representative trace of WGM shift ∆λ during

the thiol reaction is shown in Supplementary Figure 6. In addition to binding and unbinding

steps we observe large random fluctuations which we attribute to rapid exchange of CTAB

and SDS molecules at the nanorod surface. Without SDS, conditions for which the yield of

the thiol reaction drops significantly, these random fluctuations are no longer seen.

SUPPLEMENTARY INFORMATION 4. NUCLEIC ACIDS INTERACTIONS CON-

TROL EXPERIMENTS

Supplementary Figure 7a shows a WGM ∆λ trace after addition of ∼ 100 nM oligonu-

cleotide (22 mer, 10 mM NaCl, pH 7) without modification of the nanorod with a receptor

oligonucleotide. No signals are observed indicating the absence of detectable unspecific inter-

Supplementary Figure 6. Thiol reaction with gold nanorods. In addition to binding and unbinding

steps due to the reaction of a thiol modified oligonucleotide we record random fluctuations in the

WGM wavelength trace ∆λ, indicating rapid exchange of SDS and CTAB molecules at the nanorod

surface. The three WGM traces show progression of the thiol reaction.
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Supplementary Figure 7. Control experiments, all concentrations ∼ 100 nM. a. No significant

WGM ∆λ shift signals are observed for a non-functionalized nanorod. b. No significant WGM shifts

are observed for interaction of a 22 mer oligonucleotide receptor with an unrelated oligonucleotide.

c. Characteristic spikes of the WGM signal for interaction of the receptor with a 3 base mismatched

strand. d. WGM ∆λ shifts recorded for a 22 mer oligonucleotide receptor interacting with its

matching strand. Steps indicate hybridization.

actions between nucleic acids and the non-functionalized gold rod. Supplementary Figure 7b

shows that no significant WGM shift signals are observed for an unrelated oligonucleotide.

For this experiment, the nanorod was modified with 22 mer oligonucleotide receptors and the

unrelated oligonucleotide was added to final concentration ∼ 100 nM. Spikes in the WGM

∆λ trace appear only after adding a 3 base mismatched oligonucleotide at the same concen-

tration, as shown in Supplementary Figure 7c. The spikes indicate a transient interaction

between the receptor with its 3 base mismatched strand; similar data is shown in Figure 3

of the main manuscript. Supplementary Figure 7d shows result from a hybridization exper-

iment. This WGM ∆λ trace shows the 22 mer receptor interacting with its complementary
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matching strand. Steps in the WGM signal indicate hybridization. Unbinding of the com-

plementary oligonucleotide from the receptor was not observed, indicating a very low off

rate for a 22 mer oligonucleotide under these experimental conditions (pH 7, 10 mM NaCl,

∼ 20◦C).

SUPPLEMENTARY INFORMATION 5. CONCENTRATION DEPENDENCE FOR

DISCRIMINATING SINGLE BASE MISMATCH WITH A SHORT RECEPTOR

Supplementary Figure 8. Top trace: no WGM signals are observed for interaction of the 16 mer

oligonucleotide receptor with a single base mismatched strand at 20 mM NaCl. Middle trace:

Measurements with the matching strand (∼ 120 nM) show spikes in the WGM signals at 20 mM

NaCl. Bottom trace: More spikes appear after increasing the matching strand concentration by 5

fold to final concentration ∼ 0.8 µM.

SUPPLEMENTARY INFORMATION 6. POISSONIAN STATISTICS OF SINGLE

MOLECULE INTERACTION EVENTS

The Poisson distribution is a discrete probability distribution describing the probability

of observing N “rare” events of interest within a fixed time interval. Underlying the Poisson

distribution is the assumptions that within a given infinitesimal time interval the probability

of two events occurring is negligible, with only one or zero events being possible, in addition
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to the assumption of statistical independence of event occurrences between non-overlapping

time intervals [17]. Closely related to the Poisson distribution for the number of observed

events (in our case binding or transient events) is the exponential distribution, which de-

scribes the the statistics of the waiting time between events obeying Poisson statistics. To

verify the single molecule nature of our observed events [18], we have thus performed a statis-

tical analysis on the time intervals between observed interaction events (see Supplementary

Figure 9), in which we find very close agreement with the expected exponential statistics

for single molecule events. The graphs shown in Supplementary Figure 9 are typical of fits

performed on our datasets.

a b c

Supplementary Figure 9. Statistics on time intervals between observed interaction events for

a) three base pair mismatched oligonucleotide at 500 nM concentration interacting with a 22 mer

receptor: exponential decay const = 0.75 s±0.03 s, R2 of exponential fit is 0.989. b) binding events

for octamer at 285 nM concentration: exponential decay const = 30 s ± 3.5 s, R2 = 0.966, and

c) intercalating small molecules at 250 pM concentration: decay const = 6.1 s± 0.6 s, R2 = 0.956.

Given the measured decay constants τc it is possible to calculate the expected number of

events between subsequent data points in our time trace, i.e. within our time resolution of

τm = 20 ms according to the Poisson distribution

p(n) =
(Rτm)n

n!
exp[−Rτ ] (13)

where R = 1/τc is the event rate. The calculated probabilities for one, two and three events

for each of the cases depicted in Supplementary Figure 9 are shown in Supplementary Table 2.

The likelihood of multiple events within our time resolution is evidently very low, relative

to the probability of a single event.
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n Supp. Fig. 9a) Supp. Fig. 9b) Supp. Fig. 9c)

1 0.0260 0.000666 0.00326

2 0.000346 2.22× 10−7 5.36× 10−6

3 3.08× 10−6 4.93× 10−11 5.85× 10−9

Supplementary Table 2. Calculated probabilities of multiple events within a 20 ms time window,

for the cases shown in Supplementary Figure 9.

SUPPLEMENTARY INFORMATION 7. CONCENTRATION SCALING OF EVENT

RATE

Experiments were also performed to investigate the concentration dependence of observed

transient events. We have determined the average rate R directly from the time trace

of wavelength shift measurements (see Supplementary Information 6) by determining the

average rate of spike events due to single molecular interactions of a three mismatched

Supplementary Figure 10. Concentration dependence of average rate of spike events for a 3 base

mismatched 22 mer single strand DNA. Slope of linear fit = 2.93× 106 M−1s−1 (R2 = 0.977).
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single DNA strand. In each case the number of bound nanorods is the same and hence

the number of receptors is comparable. The determined rate increases linearly with the

DNA concentration as shown in Supplementary Figure 10, as would be expected for single

molecule events. Specificity of the signal follows since the unrelated DNA sequence does not

produce any significant signal (spike events) in control experiments. Linear fitting of the

data yields a slope of 2.93×106 M−1s−1 (R2 = 0.977), such that, considering an average of 20

receptors (as determined from counting subsequent binding events observed upon change of

salt concentration), we can extract an average kinetic on-rate kon for this 3 base mismatched

22 mer of kon = 1.47 × 105 M−1s−1. This value is in agreement with published values of

similar experiments for which on-rates of kon ∼ 105–106 M−1s−1 are reported [19–22].
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