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Summary

This work reports on the retrieval of the pupil function and
coherent transfer function of a coherent reflection type con-
focal microscope from simulated measurements of the inten-
sity point spread function. Two phase retrieval algorithms are
presented in this vein, which incorporate the multiple pupil
dependence of image formation in confocal microscopy. Veri-
fication of the algorithms follows by numerical simulations.

Introduction

With the growing popularity of optical measurements in
high-precision nanometrology the need for full system char-
acterization has become of paramount importance (Leach
et al., 2012). For example, an important issue that must be
addressed to bring surface topography measurements into
compliance with manufacturing quality systems is the mea-
surement traceability of the instruments. Calibration protocols
and evaluation techniques using bespoke primary instrumen-
tation currently exist, such as those detailed in Giusca et al.
(2011, 2012); however, these consider only a limited number
of system parameters, such as instrument flatness, amplifi-
cation coefficients and linearity and squareness of the scales,
and thus do not provide a complete system description. Cur-
rent trends in microscopy and three-dimensional (3D) imag-
ing towards quantitative measurements furthermore require a
complete understanding of the relevant optical imaging char-
acteristics. Localization accuracy in localization microscopy
is, for example, highly dependent on the assumed point spread
function (PSF) used for data fitting. Since the PSF is realistically
strongly dependent on system aberrations, such information
is key for accurate data analysis and system benchmarking
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(Cotte et al., 2010; Stallinga & Rieger, 2010; Cole et al., 2011;
Mandal et al., 2012; Quirin et al., 2012).

It has long been recognized that complete specification of
linear optical systems can be obtained by determining either
the 3D PSF or the associated transfer function. Indeed, among
the many alternative imaging configurations which currently
exist, such as fluorescence, interferometric and so-called con-
ventional modalities, previous work has detailed numerous
theoretical and empirical results regarding the PSF and its as-
sociated Fourier representation (see Gu, 1996; Foreman et al.,
2013, for a fuller review). Incoherent imaging systems, such as
fluorescence-based systems, act as linear filters of the scattered
optical intensity of an object such that they can be character-
ized using an intensity point spread function (IPSF). Coherent
imaging systems, however, act as a linear filter on the scat-
tered field amplitude and the amplitude point spread function
(APSF) must instead be used so as to conserve phase informa-
tion. Equivalently, the Fourier representations of the IPSF and
APSF, known as the optical transfer function (OTF) and co-
herent transfer function (CTF), respectively, can also be used.

Experimental determinations of the IPSF or OTF for inco-
herent imaging systems are commonplace in the literature
(see Foreman et al., 2013); however, due to the necessity
to measure complex field amplitudes in coherent systems,
measurements of the APSF and CTF are less prevalent. Of
those accounts reported, such measurements are predomi-
nantly approached by means of interferometry. For exam-
ple, Selligson (1981) and Dändliker et al. (2004) have used
a Mach–Zender interferometer to measure the aberrations
present in a lens by mapping the phase and IPSFs in the lens’
focal region. Similarly, Schrader & Hell (1996), Zhou & Shep-
pard (1997) and Török & Kao (2002) have reported use of
Tywman–Green interferometers for measurements of APSFs,
whereas Jus̆kaitis & Wilson (1997) and Walford et al. (2002)
have further employed fibre optic interferometers. Digital
holographic measurements have also recently been reported
(Marian et al., 2006; Cotte et al., 2010).
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Despite the extensive use of interferometric methods, non-
interferometric methods may be preferable in some circum-
stances. Wavefront sensing systems, for example, are com-
monly used in scenarios where phase perturbations are strong,
rapidly changing and broadband, such as imaging through
the atmosphere. In this vein, Beverage et al. (2002) have used
a Shack–Hartmann sensor placed at the exit pupil of a mi-
croscope to measure the exit wavefront from which the PSF
can be found via a Fourier transform (cf. Eq. 5). In other
scenarios, such as the calibration of preexisting industrial
set-ups, avoiding the need of additional optics and system
modification is preferable. Here, use of phase retrieval algo-
rithms (Gureyev et al., 1995; Almoro et al., 2006; Maiden &
Rodenburg, 2009; Sakamoto & Barrett, 2012), which use
wave propagation laws to extract phase information from
intensity only images, present a further noninterferometric
technique. In the context of optical imaging, phase retrieval
algorithms have successfully been applied in wide-field and
fluorescence microscopy for retrieval of the complex pupil
function and APSF (Hanser et al., 2004). Despite the perva-
siveness of coherent confocal imaging systems; however, the
use of phase retrieval algorithms in a coherent confocal imag-
ing set-up can currently not be found in the literature, much
to the authors’ surprise. The apparent difficulty arises since,
in conventional phase recovery algorithms, a single pupil is
assumed. In confocal microscopy, however, both the pupil
function of the objective and collecting lens play a role in the
image formation, such that the single pupil requirement is not
satisfied.

Fortunately, traditional phase retrieval algorithms can be
easily modified to allow their successful use in a confocal set-up
to retrieve either the two-dimensional (2D) pupil function or
the 3D CTF. This paper reports on these modifications and pro-
vides proof-of-principle results by way of verification. Hence,
the imaging model for a high numerical aperture (NA) reflec-
tion mode confocal microscope is first briefly presented in the
Section ‘Confocal imaging model’, before the modified phase
retrieval techniques for extraction of the complex 2D pupil
function (Section ‘Algorithm 1: retrieval of the 2D pupil func-
tion’) and the 3D CTF (Section ‘Algorithm 2: retrieval of the
3D CTF’) are discussed. Numerical verification of these algo-
rithms, using a set of simulated aberrated confocal images, is
presented in Section ‘Simulation results’.

Confocal imaging model

In a confocal microscope, both illumination and detection op-
tics contribute equally to image formation. Specifically, a point
source (assumed to be on-axis) is imaged onto the object of in-
terest by means of an objective lens L 1 and the light scattered
by the sample is imaged onto a point detector (also assumed
to be on-axis) by means of a collector lens L 2. The 3D APSF
of the imaging system, h(r), can be shown to be given by the

product of the APSF of both lenses, viz.

h(r) = h1(r)h2(r), (1)

where r is a position vector in object space. Given that only
a small area of the object is illuminated, a complete image
is built up by scanning either the illumination beam (and
synchronously the detection beam) across the object, or by
physically scanning the object position. The latter can help to
maintain shift invariance of the imaging system (Gu, 1996)
and will hence be assumed here. Therefore, and further adopt-
ing a scalar approximation, the image field from an arbitrary
object can be written as

U (rs ) =
∫ ∫ ∫

h(r)t(r − rs )d r =
∫ ∫ ∫

h(r − rs )t(r)d r, (2)

where rs denotes the scan position of the object, t(r) is the scat-
tering potential of the object and the integration is performed
over the full extent of the object.

Equivalently, a frequency domain description can be
adopted whereby

U (rs ) =
∫ ∫ ∫

h̃(m)̃t(m) exp[2π i rs · m] d m, (3)

where h̃(m) is the 3D CTF of the system, and t̃(m) is the scat-
tering spectrum; m = (m, n, s) is a triplet of spatial frequencies
in the (x, y, z) directions, such that integration is performed
over the whole spatial frequency domain. The APSF and the
CTF are related by a 3D Fourier transform, viz.

h̃(m) =
∫ ∫ ∫

h(r) exp[−2π i r · m] d r (4)

and the associated inverse relation (and similarly for t̃(m) and
t(r)). It can however be further noted that the APSF of each
individual lens is given by

h j (m) =
∫ ∫ ∫

Pj (m, n)S(m) exp[2π i r · m] d m (5)

for j = 1 or 2. Pj (m, n) is known as the pupil function and
describes apodization and phase perturbations in the pupil of
L j . The factor

S(m) = 1
s

δ[s − (1/λ2 − m2 − n2)
1
2 ] (6)

is required for a more accurate description of high NA lenses
(see, e.g. Gu, 1996; Hanser et al., 2003).

Via Eqs. (1), (4) and (5), the 3D CTF can then be written as
the 3D convolution of the pupil function of each lens, i.e.

h̃(m) = [P1(m, n)S(m, n)] ⊗3 [P2(m, n)S(m, n)] . (7)

Equation (7) illustrates the additional complication of im-
age formation in confocal microscopy, namely that it is de-
pendent on two pupils. Existing phase retrieval algorithms,
such as those presented in Hanser et al., 2004, 2003; Al-
moro et al., 2006, assume a single pupil and hence fail when
applied to confocal images. However, for a reflection mode

C© 2013 The Authors
Journal of Microscopy C© 2013 Royal Microscopical Society, 251, 99–107



P H A S E - R E T R I E V E D P U P I L A N D C O H E R E N T T R A N S F E R F U N C T I O N S I N C O N F O C A L M I C R O S C O P Y 1 0 1

confocal system a single lens is commonly used to perform
the role of both the objective and collector lens. Accordingly,
h1(r) = h2(r) = h1,2(r), such that

h(r) = h2
1,2(r) (8)

and the pupil functions are identical, i.e. P1(m, n) =
P2(m, n) = P1,2(m, n). Consequently, a simple modification of
existing algorithms can be made to allow full phase informa-
tion to be iteratively retrieved in a confocal imaging system,
as shall be discussed in the next section. As a final point, it
should be noted that Eq. (8) is also applicable to a reflection
geometry in which two lenses are used with equal amounts
of defocus. Similarly, for a transmission set-up, Eq. (8) holds if
the illumination and detection lenses have equal but opposite
defocus. Accordingly, the algorithms presented below are also
applicable in these cases.

Phase retrieval algorithm

In this paper, two alternative algorithms are presented capable
of determining the full 3D imaging properties of a coherent
reflection type confocal microscope from an intensity only
image of a point-like object. Specifically, the first retrieves the
complex valued pupil function P1,2(m, n) from the IPSF. The
CTF can then be determined via Eq. (7) if desired. The second
algorithm extracts the CTF directly from a measurement of the
IPSF. It is noted that this is not merely a 3D Fourier transform
as would be the case for an incoherent system.

Algorithm 1: retrieval of the 2D pupil function

Phase retrieval by means of variants and generalizations of
the Gerchberg–Saxton algorithm is well documented. In gen-
eral, such algorithms require an intensity distribution to be
known on at least two distinct planes within the optical sys-
tem. For example, a pure Gerchberg–Saxton algorithm as-
sumes the source and target intensity distributions are known
(Gerchberg & Saxton, 1972), whereas by means of propaga-
tion equations, knowledge of two planes within a 3D target
distribution can be used (Hanser et al., 2004; van der Avoort
et al., 2005; Pedrini et al., 2005; Almoro et al., 2006; Migukin
et al., 2011). If a 3D data set, e.g. from multiple plane ob-
servations, is acquired, data are invariably averaged along
the axial direction to improve robustness of existing phase re-
trieval algorithms. In a focusing and imaging context, these
techniques have hence proven successful in determining the
2D imaging properties of a lens or imaging system (Hanser
et al., 2004; van der Avoort et al., 2005). For a coherent con-
focal reflection set-up, these properties are contained in the
pupil function P1,2(m, n). Therefore, a modification of the al-
gorithm of Hanser et al. (2004), which originally aimed to
retrieve the pupil function in wide-field fluorescence imaging
from IPSF measurements, is presented here. The outline of this

modified algorithm (which shall be referred to as Algorithm 1)
is depicted in Figure 1 and operates as follows:

� First, an initial guess of the pupil function P1,2(m, n) is made,
which for the purposes of the calculations presented in this
paper was taken as a uniform amplitude transmittance with
uniform phase, limited by the finite aperture of the lens.

� Given this pupil function, a defocus is analytically applied
for each PSF section, by means of multiplication by a prop-
agation factor exp [i 2π�zs], where �z is the axial distance
of each PSF section from the focal plane.

� Each defocused pupil function is then used to determine
an estimate of the PSF of a single lens at the associated
defocused planes by means of Eq. (5).

� The amplitude of the resulting single lens PSF is replaced by
the fourth root of the measured confocal intensity images
and a new defocused pupil determined for each PSF section
by means of the inverse of Eq. (5).

� An average pupil function is then calculated from all defo-
cused pupils to form a new input pupil function for which
the above algorithm is repeated. Constraints, such as a fi-
nite NA restriction, and smoothing operations may also be
applied at this point. Iteration proceeds until a convergence
criterion or other exit condition is met.

When the above algorithm is compared with that of Hanser
et al. (2004), it is seen that the main difference lies in the fact
that the fourth root of the intensity images is used to update
the iterative calculations as opposed to the square root. The
origin of this difference is perhaps easiest to see from inspection
of Eq. (1), whereby it is evident that the total PSF is formed of
the product of two individual (identical) PSFs, producing an
additional exponent which needs to be accounted for. Given
the pupil function, P1,2(m, n), Eq. (7) can be used to deter-
mine the 3D CTF describing the 3D imaging properties of the
imaging system.

Similar modification of the algorithm presented in Almoro
et al. (2006) has also been made such that the phase infor-
mation of confocal image stacks of point objects can also be
retrieved without the need to directly calculate the pupil func-
tion. These results are not presented here.

Algorithm 2: retrieval of the 3D CTF

Three-dimensional information contained within an IPSF, in-
stead of being averaged along the axial direction, can alter-
natively be used to determine the full 3D CTF of a system.
Figure 2 depicts the principles behind an algorithm (which
shall be referred to as Algorithm 2) suitable for direct compu-
tation of the 3D CTF of a coherent confocal reflection imag-
ing system, from an IPSF. The parallels with the Gerchberg–
Saxton algorithm should be evident, however, the detailed
steps are as follows:
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Fig. 1. Schematic of the algorithm used to extract the pupil function of a reflection mode confocal microscope.
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Fig. 2. Schematic of the algorithm used to extract the CTF of a reflection mode confocal microscope.

� First, an initial guess of the CTF is made, which for the pur-
poses of the calculations is taken as the analytic expressions
given in Gu (1996) for an ideal reflection mode confocal mi-
croscope.

� Given this CTF, an estimate of the image field is calculated
by means of Eq. (3). The amplitude of the resulting image
field is replaced by the square root of the measured intensity
images.

� A new CTF is then calculated by using the inverse of Eq.
(3), i.e. inverse Fourier transform. The algorithm is re-
peated with the new estimate of the CTF as initial input.
Constraints, such as a finite NA restriction, and smooth-
ing operations may also be applied at this point. Iteration
again proceeds until a convergence criterion or other exit
condition is met.

It should be noted that this algorithm makes no reference
to the existence of a pupil function. Accordingly, this al-
gorithm is suitable for determination of imaging properties
for systems which do not possess an axial-independent pupil

function, such as recently proposed rotating beams (Quirin
et al., 2012).

Simulation results

To serve as test input for both of the algorithms presented
above, imaging of a point object by a reflection mode con-
focal microscope was simulated and a 3D stack of synthetic
images generated. Phase aberrations were assumed to be
present in the system, as described by the pupil function
P (m, n) = exp[i W(m, n)], where W(m, n) is a phase term rep-
resented by a sum of Zernike aberrations (Born & Wolf, 1980),
i.e.

W(m, n) =
∞∑

p=0

p∑
q=−p

p−q even

a pq Rq
p (λ

√
m2 + n2) exp[i qϕ],

where a pq are the Zernike coefficients describing the strength
of each aberration, Rq

p (ρ) are the Zernike polynomials and
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Fig. 3. Bar chart showing a comparison between the ground truth aberration coefficients and those retrieved using Algorithm 1 for noise-free and noisy
data. Error bars depict the maximum and minimum of the retrieved coefficients from all realizations. Insets show the retrieved phase of the pupil functions
in each case.

Fig. 4. Transverse (left) and axial (right) cross-sections of aberrated
√

IPSF, used during phase retrieval simulations. Insets show unaberrated case for
reference. Field of view has been truncated for display purposes only.

ϕ = arctan(n/m). Specifically, aberrations up to order p = 4
were assumed to have nonzero Zernike coefficient. The weight-
ing associated with each aberration type is shown in Fig-
ure 3 whereby it is seen that strong astigmatism, trefoil,
coma and spherical aberration were included. The 3D IPSF

data were calculated over a field of view of dimensions
10 µm × 10 µm × 10 µm, sampled at 80 nm in the x and
y-directions and at 100 nm in the axial direction. Transverse
and axial cross-sections of the magnitude of the APSF (i.e.√

IPSF) are shown in Figure 4. Note that the magnitude of the

C© 2013 The Authors
Journal of Microscopy C© 2013 Royal Microscopical Society, 251, 99–107



1 0 4 M . R . F O R E M A N E T A L .

APSF is plotted as opposed to the IPSF for increased contrast
only, and that the unaberrated case is also shown for refer-
ence purposes. An NA of 0.6 and a wavelength of λ = 670
nm was assumed throughout simulations. Fourier transforms
were implemented using a chirp-z transform, so as to avoid
the need for zero padding and other sampling issues.

Algorithm 1 was first tested by using the synthetic 3D IPSF
images as input data. The argument of the complex pupil func-
tion retrieved by Algorithm 1 after 50 iterations, was subse-
quently decomposed into its constituent Zernike aberrations
up to order p = 6 using the method of moments, and the result-
ing aberration coefficients compared to those input. Retrieved
aberration coefficients, assuming noise-free images are shown
in Figure 3, whereby it is seen that there is good agreement be-
tween the input and retrieved coefficients. Nonzero coefficients
for Zernike aberrations of order p > 4 are, however, obtained
and arise due to numerical noise introduced by finite sampling
and pixellation of the ideal images. Other discrepancies arise
for the same reason and reduce with increased sampling rates.

Further simulations were also performed, whereby additive
Gaussian noise, with a signal-to-noise (SNR) ratio of 103, was
used to corrupt the synthetic images. Before applying Algo-
rithm 1, noisy data were preprocessed. Specifically, the mean
background was subtracted (as was determined by averaging
a small portion of the images far from the optical axis) and a
bandpass filter (as determined by the NA) was applied. A total
of 200 noise realizations were simulated and the aberration
coefficients calculated in each case. The mean of all realiza-
tions is also plotted in Figure 3. The accompanying error bars
depict the maximum and minimum of the retrieved coeffi-
cients from all realizations. It should be noted that due to the
nonlinear dependence of the retrieved phase on the input in-
tensity, a bias can be introduced into the retrieved coefficients
in the presence of noise (Sakamoto & Barrett, 2012), which
can also be seen in Figure 3. Similar Monte Carlo simulations
were also performed for SNRs ranging from 10−1 to 105. For
each case, the mean of the integrated root mean square (RMS)
phase error between the retrieved and true phase profiles av-
eraged over the pupil was determined and is shown in Figure
5. A clear downward trend is evident for increasing SNR as
would be expected, however it is noted that for SNRs < 10−1

Algorithm 1 performs poorly. More sophisticated preprocess-
ing algorithms are, however, expected to improve final phase
retrieval results.

For further comparison, the upper insets of Figure 3, show
the argument of the input pupil function (i.e. the phase dis-
tortions introduced by the lens) and that retrieved in the
noise-free case. A global phase difference has been removed
for ease of comparison. The amplitude of the retrieved pupil
(not shown) exhibits a highly uniform distribution in excel-
lent agreement to the ground truth. The lower inset shows
the phase of a typical retrieved pupil function from noise cor-
rupted images (SNR = 103). The absolute mean integrated
phase error across the pupil for the noise-free and noisy case

is equivalent to 0.011 and 0.025 waves, respectively. In all
simulations, a finite NA constraint was implemented and the
argument of the pupil function constrained to be a superpo-
sition of Zernike aberrations up to order p = 6. A Gaussian
smoothing filter was also applied to the amplitude of the pupil
every five iterations.

Although good performance has been demonstrated in the
numerical simulations above, it should be noted that due to
the additional exponent involved in the update function for
Algorithm 1, the algorithm is less robust to noise as compared
to the equivalent wide-field algorithm presented in Hanser
et al. (2004). By taking the fourth root of the confocal im-
age stack, any noise present is amplified, thus reducing the
effective SNR in a nonlinear fashion. Indeed, comparable per-
formance between Algorithm 1 and its wide-field equivalent,
in terms of the errors on the retrieved aberration coefficients,
is found when SNRconfocal ≈ SNR2

wide-field As shown in Figure
2, however, Algorithm 2 uses the square root of the confo-
cal intensity images as the update function and consequently
noise is amplified to a lesser extent (and to a comparable level
to that of the wide-field pupil retrieval algorithm presented in
Hanser et al., 2004). That said, however, Algorithm 2 lacks
any improvement in effective SNR gained by averaging data
from multiple axial planes. It is hence not immediately obvious
which algorithm would be expected to have superior perfor-
mance. To compare the convergence of Algorithms 1 and 2,
the total relative RMS error between the true (normalized)
IPSFs and those iteratively retrieved is compared for a noise-
free case (and without smoothing) in Figure 5 as a function
of the number of algorithm iterations. To investigate the bal-
ance of these two effects, a number of sampling scenarios were
considered. Good convergence behaviour is seen in all cases,
with RMS error plateauing after as few as ∼20 iterations at
values of ∼10−3, albeit a small downward trend is still ex-
hibited in the data for Algorithm 2. In general, comparable
performance is seen between both algorithms, however, it is
evident that increased sampling in the axial direction, in turn
implying more confocal planes are input into the algorithms,
reduces the total RMS error. For example, Figure 5 shows that
halving the axial sample spacing, δz, from 100 to 50 nm,
gives rise to a reduction of ∼ 25% in final RMS error. Inter-
estingly, if the axial extent of the confocal stack is increased
from�z = 10 to�z = 20 µm the performance of Algorithm 1
worsens, whereas that of Algorithm 2 is relatively unchanged.
This behaviour can be understood because by increasing the
axial range of the confocal image stack, confocal planes with
very weak signal are included in the data input into the re-
trieval algorithms. For Algorithm 1, these planes merely add
noise to the averaged quantities, whereas for Algorithm 2,
planes with weak signal still contain important information
regarding the 3D imaging properties of the system and thus do
not greatly affect the RMS error, although a slight performance
degradation can be seen. With regards to convergence proper-
ties when noisy images are used as input data, it is important
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Fig. 5. (Left) Variation of average integrated RMS error on pupil phase and CTF with SNR. (Right) Convergence plots for Algorithms 1 and 2, showing
the total RMS error between the true and retrieved IPSF versus the number of algorithm iterations.

to mention that in simulations performed, total RMS errors for
Algorithm 2 remain at low levels of < 10−3, whereas those
achieved using Algorithm 1 are increased to ∼ 2 × 10−3.

Figure 6 shows the results of Algorithm 2, when applied to
a synthetic image set over a field of view of 10 µm × 10 µm ×
20 µm. The larger axial field of view was used so as to improve
the axial resolution of the retrieved CTF and to avoid effects
associated with truncating the IPSF, however, sampling dis-
tances were held constant. Specifically, the upper panels of
Figure 6 depict the amplitude of the simulated and retrieved
CTF in the n = 0 plane (left) and through the s = −1.8/λplane
(right), where the negative sign arises from the reflection ge-
ometry. Similarly, the lower panels show the corresponding
phase of the CTF. Minor discrepancies can be seen between
the true and retrieved CTF, however, these predominantly oc-
cur for spatial frequencies with low transmittance, such that
the differences are not physically important. For simulations
with Algorithm 2, no smoothing operations were performed
and only a finite NA constraint was imposed. Finally, and in
a similar vein to the Monte Carlo calculations performed for
Algorithm 1, the noise tolerance of Algorithm 2 was also inves-
tigated by corrupting the input synthetic images with additive
Gaussian noise of varying SNR. To quantify the performance
of Algorithm 2, the mean integrated RMS error between the
true and retrieved CTF averaged over 200 noise realizations
was calculated and is again plotted in Figure 5.

Conclusions

In this paper, two algorithms, capable of retrieving either the
complex pupil function, or the 3D CTF of a coherent reflec-
tion mode confocal imaging system from measurements of the
IPSF, have been proposed and detailed. Algorithm 1, designed
to achieve the former, essentially builds upon existing phase re-
trieval algorithms in incoherent imaging, such as fluorescence
microscopy, however, the dependence of image formation in

coherent confocal imaging on multiple pupils leads to the need
to modify the update function in existing algorithms.

Algorithm 1, in principle, can operate with as few as two
confocal image planes, however due to increased redundancy
and noise suppression afforded by the averaging inherent in
the algorithm, more image planes are preferable. Multiple im-
age planes however present the opportunity to directly extract
the full 3D imaging properties of the confocal set-up, as de-
scribed by the CTF. This is the remit of Algorithm 2, which
was shown to give comparable performance to Algorithm 1 in
noise-free scenarios. Simulations suggest, however, that Al-
gorithm 2 is more robust to noise present on input image data.
That said, the performance in comparison to Algorithm 1, is
in practice a balance between reduced noise amplification and
reduced averaging and so careful consideration must be given
to these points when setting image sampling rates.

Finally, it is important to comment briefly on the issue of
uniqueness of the solution found by the presented algorithms.
Uniqueness in phase retrieval problems is covered extensively
in the literature under an array of scenarios (see, e.g. Klibanov
et al., 1995, for a brief survey), however here it is noted that
the general problem of determining the phase of a function
from the modulus of its Fourier transform does not admit
a unique solution, however, the constraint of a finite pupil,
that is to say a band-limited function, greatly restricts the
solution set. Within this class of constrained phase retrieval
problems, the solution can be shown to be unique up to so-
called “zero-flipping” (Walther, 1963). In this regard, both
algorithms presented make no special efforts to avoid this am-
biguity, however, in all cases simulated they were found to
converge to the true solution. Ultimately, it is thus envisaged
that this work not only allows quantitative phase studies in
confocal microscopy in both biological and engineering mea-
surement contexts, but also permits full system characteriza-
tion and calibration, without the need to introduce additional
optics.
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Fig. 6. Axial (left) and transverse (right) cross-sections, taken in the spatial frequency domain, of the amplitude (top panels) and argument (bottom
panels) of the CTF determined by numerical evaluation of Eq. (7) and that retrieved from simulated intensity images of a point object using Algorithm 2.
Dashed lines represent planes at which transverse and axial cross-sections were taken, respectively. Distance bars in all cases show a length of 1/(2λ).
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