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Abstract

A significant number of areal surface topography measuring instruments, largely based on

optical techniques, are commercially available. However, implementation of optical

instrumentation into production is currently difficult due to the lack of understanding of the

complex interaction between the light and the component surface. Studying the optical transfer

function of the instrument can help address this issue. Here a review is given of techniques for

the measurement of optical transfer functions. Starting from the basis of a spatially coherent,

monochromatic confocal scanning imaging system, the theory of optical transfer functions in

three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing

the extension of the theory to the description of conventional and interferometric 3D imaging

systems. Polychromatic transfer functions and surface topography measurements are also

discussed. Following presentation of theoretical results, experimental methods to measure the

optical transfer function of each class of system are presented, with a focus on suitable

methods for the establishment of calibration standards in 3D imaging and surface topography

measurements.

Keywords: areal surface topography, optical transfer function, optical instruments, point

spread function, linear theory
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Abbreviations

NA numerical aperture

PSF point spread function

LSF line spread function

ESF edge spread function

OTF optical transfer function

CTF coherent transfer function

MTF modulation transfer function

PTF phase transfer function

WOTF weak object transfer function

DHM digital holographic microscope

CPM coherence probe microscope

SPM scanning probe microscope

OCT optical coherence tomography

CCM confocal chromatic microscopy
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CSI coherence scanning interferometry

DSI dispersive scanning interferometry

TCC transmission cross-coefficient

1. Introduction

The performance and functional properties of a large number

of engineered surfaces and parts can depend strongly on

their topographical and textural characteristics. For example,

surface deviations in ground optical lenses can give rise

to optical aberrations degrading imaging quality, whilst

roughness in engine parts can lead to increased wear and

shorter component lifetimes. Conversely, increased wear

can also improve the functional performance of a surface.

Accordingly, the determination of surface properties has long

been an important problem since this can play a crucial role

in controlling manufacturing procedures and allowing quality

control of components such as MEMS wafers, industrial

coatings, optical lenses and machined parts. Furthermore, in

many situations information gained from surface topography

data permits development of new product specifications with

enhanced functionality.

Historically, a number of complementary techniques have

been employed to perform surface topography measure-

ments, namely stylus- and optical-probe-based instruments

[1, 2]. Mechanical-stylus-based instruments were initially

exclusively used to measure height variations with high reso-

lution, whilst optical methods were oriented towards the mea-

surement of a transverse structure. However, as these tech-

niques have developed so their three-dimensional (3D) and

areal capabilities have converged in the so-called horns of

metrology [3]. Greater demands are, however, being made

of surface metrology particularly at nanometre scales, where

high resolution and rapid data acquisition are sought. Optical

techniques, such as conventional Michelson and Twyman–

Green interferometry [4], Schmaltz light sectioning

microscopy [5], Tolansky multiple beam interferometry

[6], fringes of equal chromatic order interferometry [7],

Linnik microinterferometry [8], Mirau interferometry [9],

phase shifting interferometry [10], coherence scanning/white

light interferometry [11, 12] and confocal microscopy [13],

have the potential to satisfy these needs.

An important issue that must be addressed to bring

surface topography into compliance with manufacturing

quality systems is the measurement traceability of the

instruments. Whilst there is a traceability infrastructure for

stylus instruments operating in a profile mode [4], there is not

yet a satisfactory infrastructure for areal surface topography

measuring instruments. To fill the traceability chain from the

definition of the metre to an areal measurement in industry, a

number of steps are required (see figure 1). Firstly, primary

instrumentation that can measure areal surface topography

is needed. A number of national measurement institutes

(including the National Physical Laboratory (NPL) in the

UK) have developed stylus instruments with displacement

measuring laser interferometers that can determine the position

of the stylus tip [14, 15]. Knowledge of the laser source

wavelength in the interferometers assures traceability to the

definition of the metre. Secondly, transfer artefacts are needed

that can be calibrated via the primary instrumentation (either

directly or indirectly) and used in turn to calibrate instruments

in industry.

NPL has been working towards a traceability

infrastructure for areal measurement for a decade, for

both stylus based and optical systems. Significant effort

has, for example, been made towards the production of

low cost, calibrated artefacts and good practice guides for

stylus instruments, phase stepping and coherence scanning

interferometers and scanning confocal microscopes. Artefacts

and guides for focus variation microscopy are also expected

shortly. The general philosophy behind the calibration schemes

developed can, however, be extended to most commercial

instruments. A stylus-based primary instrument has also been

developed and methods for calculating uncertainties using

this instrument, based on a Monte Carlo approach, devised

[16]. Calibration protocols and evaluation techniques have

also been developed at NPL, such as those detailed in [17–19],

using bespoke primary instrumentation [14]. These protocols,

however, address only the calibration of the scales of an areal

surface topography measuring instrument. The calibration

consists of measuring the noise and flatness of the instrument,

amplification coefficients, linearity and squareness of the

scales, which although common to all instrument types, do not

give a complete system characterization. These parameters, for

example, do not describe the response of the system to sloped

surfaces. Similarly the Physikalisch-TechnischeBundesanstalt

(PTB) provide artefacts for the calibration of vertical and

lateral measurements of contact stylus instruments. PTB also

provide an online review of calibration artefacts used for

dimensional measurement of microstructures [20] and those

used for the calibration of scanning probemicroscopes (SPMs)

[21]. The calibration artefact of Ritter et al also stands as

a notable compliment to those available for calibration of

SPMs. A number of artefacts are also available from the

National Institute of Standards and Technology (NIST) and

other manufacturers and researchers [22–25]. Such calibration

artefacts, however, are either intended for the calibration

of restricted system parameters, e.g. lateral resolution, or

for determining the so-called instrument transfer function.

Whilst the former inherently does not provide a complete

characterization of ameasurement system, the latter provides a

description of all stages in the measurement system including

(potentially nonlinear) digital image processing stages as a

whole. As such the instrument transfer function provides

limited insight into the origin of factors degrading and limiting

image quality. Measurement of the optical transfer function

(OTF) of the system provides complete information as to

the imaging properties of an instrument, however, and is

for this reason being actively pursued [26, 27]. A standard

measurement technique has nevertheless still to be agreed. This

paper focuses on reviewing work done to date on measuring

the OTF as a basis from which to build such a standard (see

also [28–31]).

In this context, section 2 covers the basics of linear optical

theory inwhich theOTFs of common 3D imaging architectures

are defined and discussed. Much of the relevant theory exists
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Figure 1. Flow diagram of the steps required for areal traceability to the metre. Note that in practice there would be another stabilized laser
between the primary laser and the interferometers.

in the literature and so only the fundamentals are reproduced

here; however, appropriate references are given throughout for

the interested reader. Section 3 proceeds to discuss techniques

reported in the literature of how OTFs can, and have been

measured in practice. A concluding discussion and viewpoint

is given in section 4.

2. Three-dimensional linear theory in optical
metrology

Any measurement system can be regarded as a mathematical

mapping from a set of input functions to an associated set of

output functions. The system output can thus be represented as

v(r) = M[u(r′)], where r and r′ are coordinates in output and

input space, respectively, and M[· · ·] represents the mapping
from u(r′) to v(r).

A common approximation in many systems is to assume

that the function M[· · ·] is linear, such that the principle of
superposition holds. Within the context of optical metrology,

this approximation equates to assuming multiple scattering

is negligible and that the Born approximation holds (see

section 2.1). Accordingly, if the input function is represented as

a superposition of point-like elements, then the system output

is given by

v(r) =
∫

V ′
u(s)M[δ(r′ − s)] ds =

∫

V ′
u(s)h(r, s) ds, (1)

where s is a dummy variable and V ′ is the domain of the

input function. The function h(r, s) is known as the impulse

response of the measurement system or, in the case of optical

instruments, as the point spread function (PSF). Physically,

the PSF describes the output from a single elementary input or

scattering source. Further assuming the measurement system

to be spatially shift-invariant implies the PSF is dependent only

on the difference of coordinates such that h(r, s) = h(r−s). It

should be noted that there may exist an implicit scaling in the

coordinates (e.g. as may be associated with the magnification

of an imaging setup). Under these assumptions, equation (1)

can then be expressed as a 3D convolution, namely

v(r) = h(r) ⊗3 u(r) =
∫

∞
u(s)h(r − s) ds, (2)

where the integration limits are over all space, such that the

function u(s) is now assumed to adopt a zero value outside the

domain V ′.

Whilst it is insightful and intuitive to analyse a

measurement system in terms of its response to point-

like inputs, an alternative choice of an elementary input

function commonly considered is that of a sinusoidally varying

function. This analysis ultimately dates back to the work of

Fourier, butwas first considered in optical imaging byDuffieux

[32] in 1946, following the sine-wave tests of Selwyn [33]. In

this vein, it is necessary to move from the spatial domain

(described by r and r′) to a spatial frequency domain, whereby

the 3D spectrum of the source and output distribution can be

defined via a 3D inverse Fourier transform, namely

ũ(m) =
∫

∞
u(r′) e−2π im·r′

dr′ (3)

(and similarly for ṽ(m)), where m = (m, n, q) is a triplet

of spatial frequencies. It should be noted that the f̃ (m)

notation will be used throughout this text to signify the

Fourier representation of a function f (r) and that all limits

on integrals will be assumed to be over an infinite domain. In

the Fourier domain, the convolution of equation (2) becomes

the mathematically simpler product ṽ(m) = h̃(m)ũ(m),

where h̃(m) is the so-called OTF, given by the inverse Fourier

transform of the PSF.

The function h̃(m) warrants further discussion,

particularly in the context of optical metrology. Fundamental

to any optical metrology setup is a 3D imaging setup,

with object parameters, such as surface height or roughness,

derived from a 3D image via appropriate data processing.

An interferometric detection architecture is also commonly

used. In optical imaging systems, however, the light source

may be coherent (e.g. laser illumination), incoherent (e.g.

tungsten lamp) or even partially coherent. Moreover, the

scattering and/or detection process may also fall into any

of these same three categories (e.g. a fibre-optic scanning

confocal reflection microscope, fluorescence microscope

or conventional microscope [34–36]). Importantly, these

different possibilities necessitate different system models,

particularly with regards to which optical variable the system

is linear in. For coherent systems, the OTF is more specifically

referred to as the coherent transfer function (CTF) which

describes both the attenuation and phase shift introduced in

the image of a sinusoidal field pattern (or scattering potential

if the Born approximation is satisfied, cf section 2.1), i.e. the

system is ‘linear in complex field’. Importantly, if the Born

approximation is also satisfied, then the system can also be said

to be ‘linear in scattering potential’. The modulus of the CTF
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is known as the modulation transfer function (MTF), whilst

the argument is termed the phase transfer function (PTF) [37].

An OTF, MTF and PTF can be defined analogously for an

incoherent case; however, in this case the system is ‘linear

in intensity’, or, if the Born approximation is satisfied, the

system is also ‘linear in the square of the scattering potential’.

Partially coherent systems are inherently more complicated,

with image formation no longer describable using an OTF.

Instead, the so-called transmission cross-coefficient (TCC)

[36, 38] must be defined which describes the attenuation and

relative phase shift upon imaging pairs of spatial frequencies

(of the underlying time instantaneous field). Definition of the

so-called weak object transfer function (WOTF) is sometimes

possible in a partially coherent system if scattering from the

object can be considered weak [34]; however, this will not be

discussed further here for the sake of brevity.

Studies of OTFswere perhaps first initiated byDändlinker

and Weiss [39], and by Wolf [40], who discussed the

reconstruction of the 3D refractive index distribution of

a semi-transparent scattering object from scattered waves

and holographic measurements, respectively. Both treatments,

however, described 3D imaging theory in a coherent system

only. The first treatment of incoherent systems was presented

by Frieden who developed a 3D transfer function theory [41],

by extending the 2D transfer function originally proposed

by Duffieux [32]. A partially coherent treatment of image

formation was first presented by Hopkins in his seminal work

[42], albeit in a 2D manner, with the 3D treatment given by

Striebl [36]. Striebl’s work was, however, an approximate

treatment in which bilinear terms were neglected. Image

formation in confocal microscopes has been shown to fall

into a class of imaging systems not considered in Hopkin’s

or Striebl’s original work [43]. As such, Sheppard and Mao

extended their work to include the bilinear terms and hence

provide a more accurate description of imaging in both

conventional and confocal arrangements [38]. Formally, 3D

imaging can be considered by an introduction of defocused

pupil functions into existing 2D treatments [44, 45]. As such it

is worthwhile to mention the work of Sheppard and Wilson

on 2D image formation in scanning microscopy [46–49].

However, an alternative is to use a full 3D CTF treatment, such

as that presented in [34, 35, 50–55]. The derivations presented

in these works are, however, for ideal systems. Deviations

from such ideal circumstances and their effect on the OTF

of imaging systems have been considered in [56, 57], for

example.

For high NA (i.e. NA& 0.5) systems, departures from the

more common paraxial theory presented in the above-cited

articles arise due to three main effects. The first of these is that

waves propagating in the system can do so at large angles to

the optical axis, such that the inherent small angle expansions

are no longer valid. Secondly, polarization properties of light

become important due to the introduction of a non-negligible

longitudinal component in object space. Finally, in moving

away froma lowNAsystem the pupil function of a lens can also

no longer be specified in the pupil plane of the lens. Instead,

the pupil function must be specified over the surface of the

Gaussian reference sphere [58] located in the exit pupil centred

on the geometric focus of the lens (cf equation (9)), introducing

an additional apodisation effect. In this vein, Sheppard et al

[59, 60] have approached the generalization of the OTF to high

NA systems avoiding the paraxial approximation; however,

vectorial effects were not included. The apodisation effect has

also been considered [61]. Vectorial transfer functions have be

considered within a paraxial regime by Urbańczyk [62–64],

albeit this work considered only 2D image formation. A fuller

3D vectorial theory has however been proposed by Arnison

and Sheppard [65], and Sheppard and Larkin [66] which also

relaxes the paraxial approximation. These ideas have, however,

not received significant attention in the literature, due to the

underlying mathematical complexity.

A final issue worthy of note is the assumption of shift

invariance in high NA imaging systems. Particularly, the

amplitude PSF is, in general, not shift invariant such that this

assumption is not valid. If however 3D object scanning is used,

it is evident that the imaging properties of the optical systemare

unchanged with object position, such that 3D shift invariance

can safely be assumed. Full 3D object scanning is however

not required if the lens satisfies the sine condition, such that

the apodisation function takes the form a(θ ) =
√
cos θ , which

produces transverse shift invariance. Full 3D shift invariance

can hence be maintained if only axial object scanning is

used [31].

Given the array of different imaging configurations, it

seems a somewhat arduous task to analyse all possible

imaging configurations. Equivalencies between confocal

and conventional arrangements and scanning microscopes

of differing geometries have, however, been expounded

[31, 43] reducing the number of distinct geometries that need

be considered. This equivalence originates from Helmholtz’s

principle of reversibility. As such, in this document it is

only necessary to describe a scanning confocal microscope

with either a point, or infinite, intensity sensitive detector

for both coherent and incoherent illumination as is done in

sections 2.2 and 2.3, respectively. A description of partially

coherent systems will naturally emerge in these discussions.

Interferometric arrangements will also be considered and the

OTF for the interference image is presented in section 2.4.

Polarization effects will not be considered, however, due to

the extra level of complexity required to fully account for

such features and the additional difficulties associated with

measuring vectorial transfer functions. Measurements of such

vectorial transfer functions are also difficult to find in the

literature. Moreover, only reflection geometries are to be

considered as this is the usual operational setup in optical

metrology. The equivalencies of each system geometry will be

indicatedwhere appropriate. Before proceeding to describe the

OTF for these geometries, it is first necessary to consider the

nature of the process bywhich an illuminating field is scattered

from a sample of interest, as discussed in the following section.

2.1. Scattering theory and the Born approximation

Since engineering surfaces are not self-luminous, it is

necessary to illuminate them with a known field and measure

the light subsequently scattered from the object. The standard
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starting point for a derivation of the scattered field (see e.g.

[58]) is the scalar wave equation,

∇2E(r) + k2n2(r)E(r) = 0, (4)

whereE(r) is the complex scalar field at position r in amedium

of refractive index n(r), assumed to be monochromatic with

time dependence exp(−iωt) and k = ω/c = 2π/λ is the

associated wavenumber in vacuum. When a field is incident

on an inhomogeneity in the refractive index, a scattered field

results. As such the resulting field is a superposition of the

original incident field and the scattered field, i.e. E = Er + Es.

Hence,

∇2(Er(r) + Es(r)) + k2n2(r)(Er(r) + Es(r)) = 0. (5)

Noting that Er is the illumination field that must satisfy the

scalar wave equation in the absence of the scattering object,

i.e. ∇2Er(r) + k2Er(r) = 0 yields

(
∇2 + k2

)
Es(r) = t(r)(Er(r) + Es(r)), (6)

where t(r) = k2[n2(r)−1] is known as the scattering potential.
Equation (6) takes the form of a free-space scalar wave

equation with the source term (or scattering function)U (r) =
t(r)(Er(r) + Es(r)). Accordingly, equation (6) can thus be

solved using the well-known free-space Green’s function

G(r) = exp(ik|r|)/4π |r| [67] to give Es(r) = G(r) ⊗3 U (r).

In linear optical scattering, a further approximation is

generally adopted to permit tractable mathematical analysis.

Specifically, the first Born approximation states that the source

term U (r) = Ur(r) + Us(r) can be replaced by Ur(r), that is

to say that the object scatters weakly such that

U (r) ≈ t(r)Er(r). (7)

Neglecting effects arising from multiple scattering and

depletion of the illumination beam is also implicit in making

the Born approximation. Accordingly, the interaction with the

object can be considered as reflection from a sample with

complex reflection coefficient t(r) = k2
[
n2(r) − 1

]
. Indeed,

if the Born approximation is valid, then the output field of

an imaging system can be said to be linearly related to the

scattering potential or effective reflection coefficient, as per

equation (7). Equally the scattered intensity from an object

is linearly related to |t(r)|2, i.e. the effective reflectivity. This
assumption will be seen to enable derivation of the OTF in

a number of complex optical systems. A discussion on the

validity of adopting the Born approximation can be found in

[68]. Finally, it should be noted that throughout this section no

mention of any optics that may modify the form of the field

incident onto the scattering object has been made, since such

effects can be included in the PSF (and hence also the OTF)

of an optical system. An example of this will be seen in the

following section.

2.2. Confocal and conventional coherent imaging systems

In this section, the pertinent theory from the above literature

is distilled into a derivation of the CTF for imaging in

Figure 2. Schematic of the optical setup and coordinate geometry of
a reflection type microscope, comprising two lenses L1 and L2 with
associated pupil functions P1(ζ1, η1) and P2(ζ2, η2), respectively. A
weakly scattering object is assumed present with scattering
properties described by t(r).

both confocal and conventional coherent imaging systems.

Following from the equivalence theorem presented in [31, 43],

the CTF will be derived by considering a confocal scanning

system with a point detector and infinite incoherent detector,

respectively.

Consider then the setup shown in figure 2, which depicts

the basic arrangement of a confocal imaging system operating

in a reflection mode. A point source is imaged onto the object

of interest by means of an objective lens L1. The light back

scattered is then imaged onto a detector by means of the

collector lens L2. It should be noted that naming conventions

for these lenses depend on the exact imaging geometry [49].

In practical systems, a single lens is used to perform the role

of both objective and collector.

The 3D PSF of each lens is given by [31]

h j(r) =
∫

h̃ j(m) e2π im·r dm, (8)

where

h̃ j(m) =
Pj(m, n)

q
δ(q −

√
1/λ2 − m2 − n2). (9)

Here, Pj(m, n) is the 2D pupil function of lens L j. The Dirac

delta function demonstrates that the pupil function of a high

NA lens is defined over a spherical cap in the Fourier domain.

Integration over q can be analytically performed to give

h j(r) =
∫ ∫

Pj(m, n, z)√
1/λ2 − m2 − n2

exp [2π i(mx + ny)] dm dn,

(10)

where

Pj(m, n, z) = Pj(m, n) exp[2π iz
√
1/λ2 − m2 − n2] (11)

is known as the defocused pupil function. Henceforth

assuming, for simplicity, that the point source is placed on

axis at r0 = 0 implies the field incident on the object plane is
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given by Er(r1) = h1(r1). From equation (7), the scattering

function (assuming the object has been scanned to a position

rs) becomes

U (r1, rs) ≈ t(rs − r1)h1(r1). (12)

Following linear imaging theory, the field at a position r2 in

detector space is given by the convolution of the PSF of the

collector lens with the source functionU (r1, rs). Treating this

field as a function of the object scan position gives

Ed(rs, r2) =
∫

h1(r1)h2(r1 + M2r2)t(rs − r1) dr1 (13)

where, following [31], M2 is a diagonal 3 × 3 matrix

with diagonal elements describing the transverse and

axial magnifications. Equation (13) demonstrates the linear

relationship between the field incident onto the detector and

the scattering potential in a coherent system. An effective PSF

can hence be defined for the system as [50]

heff(r1, r2) = h1(r1)h2(r1 + M2r2) (14)

along with the corresponding CTF h̃eff(m, r2). For a general

finite sized detector described by the response functionD(r2),

the intensity recorded for each scan position is given by

Id(rs) =
∫

|Ed (rs, r2)|2 D(r2) dr2. (15)

Through its dependence on the 3D position vector r2, the

response function D(r2) allows for a general detection

configuration, such as a tilted CCD, tomographic projections

etc. In what follows however restriction will be made to

ideal confocal (denoted by the subscript cf) and conventional

(cv) imaging systems which employ a point detector at rd

or an infinite planar detector at zd , respectively, such that

Dcf(r2) = δ(r2 − rd ) and Dcv(r2) = δ(z2 − zd ). Using

equations (13)–(15) and their Fourier domain equivalents

yields

Id(rs) =
∫ ∫

H̃(m, m′ )̃t(m)̃t∗(m′)

× exp[2π irs · (m − m′)] dm dm′, (16)

where

H̃(m, m′) =
∫

h̃eff(m, r2 )̃h
∗
eff(m

′, r2)D(r2) dr2 (17)

is the TCC introduced above. It can be seen from equation (16)

that, in this general case, the linear dependence of the system

on the scattering potential is lost due to the product t̃(m)̃t∗(m′).

For an ideal confocal system, the sifting property of the Dirac

delta function in the response function immediately gives

the detected confocal signal as |Ed(rs, rd )|2, thus implying
the confocal CTF is given by h̃cf(m, rd ) = h̃eff(m, rd ). For the

simple case of an on-axis detector (rd = 0), the confocal PSF

reduces to hcf(r1, 0) = h1(r1)h2(r1) and the CTF becomes

h̃cf(m, 0) =
{

P1(m, n)

q
δ(q −

√
1/λ2 − m2 − n2)

}

⊗3

{
P2(m, n)

q
δ(q −

√
1/λ2 − m2 − n2)

}
. (18)

Furthermore, the confocal TCC becomes separable in m and

m′ such that H̃cf(m, m′) = h̃cf(m, 0)̃h∗
cf(m

′, 0).

Image formation in a conventional imaging system

however does not give a separable TCC. Instead the TCC

in this case is given by

H̃cv(m, m′) =
∫

h̃1(m − m′′ )̃h∗
1(m

′ − m′′)
∣∣̃h2(m′′)

∣∣2 dm′′.

(19)

Note the equivalence between a confocal setup with an infinite

detector and a conventional imaging system dictates that the

pupil function for the condenser lens in the conventional

system is the same as that for the collector in the confocal

system and the objective lens in each system is identical [38].

Accordingly, in equation (19), the P1 and P2 terms, implicit

in the h̃1 and h̃2 factors, refer to the pupil functions of the

objective and condenser lens, respectively. It is noted that

phase aberrations in the condenser lens are irrelevant with

regards to determining the TCC, such that if it is assumed that

the condenser is perfectly transmitting, the TCC reduces to

H̃cv(m, m′) =
∫

h̃1(m − m′′ )̃h∗
1(m

′ − m′′) dm′′. (20)

For later reference, the image of a point object in a

coherent system is briefly considered. For a point object

t(r) = δ(r − ro), the measured intensity derived from the

square of equation (13) reduces to

Id(rs, ro) = |h1(rs − ro)|2
∫

|h2(rs − ro + M2r2)|2 D(r2) dr2

(21)

which is known as the intensity PSF. For a point detector (such

as in the ideal confocal case), the intensity PSF is given by

Hcf(rs, ro) = |h1(rs − ro)|2 |h2(rs − ro + M2rd )|2 (22)

as would be expected by squaring the amplitude PSF of

equation (14). However, for an infinite detector, as is equivalent

to a conventional imaging system, equation (21) reduces to

Hcv(rs, ro) = |h1(rs − ro)|2 (23)

since convolution with an infinite uniform function has no

functional dependence and can be dropped. A common

misconception is that whilst equations (22) and (23) express

the image of a point object, equations (13) and (15) do not

represent the sum of the intensity scattered from each point

on an object for a coherent system. This issue will be further

discussed in the following section.

2.3. Confocal and conventional incoherent imaging systems

Whilst the preceding section considered image formation in

coherent optical systems in which the imaging process acts as

a linear filter in field amplitude, incoherent imaging acts as

a linear filter in intensity. Incoherent imaging models must

be used if, for example, an extended incoherent source is

used, or if phase coherence from the illumination field is lost

during interaction with the sample, such as in a fluorescence

microscope. In optical metrology, the use of an extended

6
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incoherent illumination is, by far, the more relevant of these

two scenarios. That said, a one-photon fluorescence model

will be used here [34] and the equivalences detailed in [43]

again invoked, such that the imaging geometries adopted thus

far (i.e. point source) can be maintained and the mathematical

framework does not require significant modification.

To begin equation (7) is revisited. Given that phase

coherence is assumed to be lost, scattering must be described

as a spatially incoherent process whereby I(r) = T (r)Ir(r),

where T (r) = |t(r)|2 and Ir(r) is the illuminating intensity.

It follows that I(r1) = |h1(r1)|2T (r1) and for an incoherent

imaging process the intensity in detector space, for an object

scanned to rs, is given by

Id(rs, r2) =
∫

|h1(r1)|2|h2(r1 + M2r2)|2T (rs − r1) dr1

(24)

in a similar fashion to above. In contrast to equation (13),

equation (24) shows the linear relationship between detected

intensity and the modulus squared of the scattering potential

in an incoherent system. Following earlier discussions the

intensity recorded by a finite-sized detector is hence

Id(rs) =
∫

H(r1)T (rs − r1) dr1, (25)

where now

H(r1) =
∫

|h1(r1)|2|h2(r1 + M2r2)|2D(r2) dr2 (26)

is the intensity PSF for a point object at r1. Restricting to

the ideal confocal (point detector) and conventional (infinite

detector) cases gives

Hcf(rs, ro) = |h1(rs − ro)|2|h2(rs − ro + M2rd )|2 (27)

and

Hcv(rs, ro) = |h1(rs − ro)|2, (28)

respectively. Comparing equations (27) and (28) to equations

(22) and (23) it is seen that the intensity PSFs for the coherent

and incoherent systems are identical in form. That said the

resulting images differ by virtue of the difference between

equations (13) and (25).

As highlighted by Gu in [34], the equivalence of

the intensity PSFs in coherent and incoherent imaging

systems highlights the inadequacy of the PSF description

of imaging systems. Instead an OTF description is deemed

more fundamental since differences can be seen here. Indeed,

following [41], the 3D OTF in an incoherent system is defined

as the 3D inverse Fourier transform of the intensity PSF,

namely

H̃(m) =
∫

H(r1) exp[−2π ir1 · m] dr1. (29)

Defining the object and image spectra (denoted T̃ (m) and

Ĩ(m) respectively) in a similar fashion, the convolution integral

expressed in equation (25) can bewritten in the Fourier domain

as

Ĩ(m) = H̃(m)T̃ (m). (30)

In relation to the definition of the OTF given in equation (29),

it is important to note that whilst for the confocal case the

intensity PSF is given by the square of the amplitude PSF, the

OTF is not given by the square of the CTF. The incoherent

OTF is in fact related to the CTF of the analogous system via

the convolution integral H̃eff(m) = H̃eff−1(m) ⊗3 H̃eff−2(m),

where

H̃eff−n(m) =
∫

|hn(r)|2 exp[−2π ir · m] dr

= h̃∗
n(m) ⋆ h̃n(m

′), (31)

and ⋆ denotes a 3D correlation. Likewise, for a conventional

imaging arrangement the incoherent OTF is given by the

autocorrelation of the amplitude PSF of the objective lens, i.e.

H̃cv(m) = h̃∗
1(m) ⋆ h̃1(m). This observation will be required

in section 3.

2.4. Confocal and conventional interferometeric setups

Interferometric microscopes can be found in numerous

configurations, such as the Linnik, Mirau, Michelson, Fizeau,

Mach–Zehnder or confocal interferometers [69]. Each has

its own advantages and disadvantages [70]; however, in all

geometries the field scattered from the object is combined

with that of a reference beam. Imaging in an interference

microscope has previously been considered in, for example,

[47, 71–73]. The setup considered in [47], for example, is based

upon a Mach–Zehnder configuration. Moreover, it should be

noted that a digital holographic microscope (DHM) is based

upon a Mach–Zehnder architecture, albeit without any lenses

present in the reference arm [40]. As such the wavefront in the

reference arm is less important in a DHM [74, 75]. Derivations

for the CTF of a confocal interferometer and a fibre-optical

confocal interferometer can be found in [34, 76].

In this section, both confocal and conventional

interferometric microscopy setups are considered and

the associated OTF presented. Confocal interferometric

microscopy, for example forms the basis of optical coherence

systems (such as optical coherence tomography (OCT)), whilst

a coherence probe microscope (CPM) is an example of a

conventional interference microscope [77] commonly found

in surface profilometry [78].

To derive the OTF for interferometric imaging it must

first be noted that the intensity at a point r2 in detector space

is given by

Ii(r2) = |Ed(r2)|2 + |Eref(r2)|2 + 2ℜ[Ed (r2)E
∗
ref(r2)], (32)

where Eref(r2) is the reference field (and the dependence on

rs has been omitted for clarity). Three contributions can be

identified namely two non-interference terms arising from

the object and reference beam, plus a term from the

interference of the object and reference field. For simplicity,

it will be assumed that in the reference arm the scattering

function is given by a complex constant, r, as appropriate to

reflection by amirror, i.e. tref(r1) = rδ(z1). Note the associated

spectrum is t̃ref(m) = rδ(m)δ(n). For a general detection

geometry, themeasured reference intensity is given, in analogy

7
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with (16), by

Iref(rs) =
∫ ∫

H̃ref(m, m′ )̃tref(m)̃t∗ref(m
′) dm dm′ (33)

= |r|2
∫ ∫

H̃ref(0, 0, q, 0, 0, q′) dq dq′. (34)

It is noted that the reference object is not scanned such that

there is no dependence on rs. Here, in analogy with (17),

H̃ref(m, m′)=
∫

h̃eff−ref(m, r2 )̃h
∗
eff−ref(m

′, r2)D(r2) dr2 (35)

and h̃eff−ref(m, r2) is defined analogously to equation (14)

albeit with the pupil functions replaced by those appropriate

for the reference arm optics.

Most interesting, however, are the interference terms

since these carry information about the object. The point-wise

intensity in detector space is given by a term of the form

Ed(r2)E
∗
ref(r2) = r∗

∫ ∫
h̃eff(m, r2 )̃h

∗
eff−ref(0, 0, q′, r2 )̃t(m)

× e2π irs·m dm dq′. (36)

The recorded intensity for each scan point is then given by

Iint(rs) =
∫
2ℜ[Ed (r2)E

∗
ref(r2)D(r2) dr2] (37)

= 2ℜ
[∫

h̃int(m)̃t(m) exp[2π irs · m] dm

]
, (38)

where h̃int(m) is the interference CTF given by

h̃int(m) = r∗
∫ ∫

h̃eff(m, r2 )̃h
∗
eff−ref(0, 0, q′, r2)D(r2) dr2 dq

′.

(39)

Given these equations it is apparent that interferometric

systems represent a different class of system to both coherent

and incoherent systems. Specifically it is important to note,

as evident from equation (37), that the recorded intensity

Iint is linearly dependent on the scattering potential t(r), in

contrast to the linear relationships detailed previously for

coherent and incoherent systems. Since, detectors record the

incident intensity, yet it is the (potentially complex) scattering

potential that is sought in optical metrology; interferometry

based configurations are the more popular in this context.

2.5. Monochromatic versus polychromatic illumination

Thus far consideration has been restricted to a monochromatic

treatment; however, numerous polychromatic metrology

techniques exist, such as OCT, coherence scanning

interferometry (CSI), confocal chromatic microscopy (CCM)

and dispersive scanning interferometry (DSI) [2]. Implicit

in the earlier results is a dependence on the illumination

wave, via k = 2π/λ. It is possible to define a polychromatic

transfer function by integrating the monochromatic transfer

function [79–84]; however, this approach is only valid under

the assumption that the object function t(r) is itself not

dependent on the wavelength. Given the usual definition of the

scattering potential in section 2.1, it is evident that this does not

hold, due to a dependence on both illumination wavenumber

k and refractive index. The k2 factor in the scattering potential

can however be absorbed into the appropriate expressions for

the transfer function (see e.g. [85]). Such an approach will

naturally accommodate chromatic aberrations and dispersive

effects of the measurement system. Dispersive effects of the

sample may, however, exist as will be parameterized within

the refractive index term of the scattering potential. Assuming,

however, that no strong material resonances exist within the

illumination bandwidth, these effects will be weak. These

conditions are assumed to apply here, so that a polychromatic

CTF may be defined as

h̃poly(m, r2) =
∫

h̃mono(m, r2, λ)s(λ) dλ, (40)

where s(λ) represents the (complex) amplitude of each spectral

component. Accordingly the polychromatic TCC follows as

H̃poly(m, m′) =
∫ ∫ ∫

h̃mono(m, r2, λ)̃h∗
mono(m

′, r2, λ
′)

×〈s(λ)s∗(λ′)〉D(r2) dλ dλ
′ dr2, (41)

where the angular brackets, 〈· · ·〉, denote temporal averaging.
If strong phase coherence is present between spectral

components, then 〈s(λ)s∗(λ′)〉 = s(λ)s∗(λ′). Conversely for

a temporally incoherent source, such as an incandescent lamp

〈s(λ)s∗(λ′)〉 = S(λ)δ(λ − λ′) such that

H̃poly(m, m′) =
∫

R(λ)H̃mono(m, m′, λ)S(λ) dλ, (42)

where the spectral response R(λ) of the detector has

also been introduced for completeness and H̃mono(m, m′, λ)

is the monochromatic TCC discussed in earlier sections.

Ultimately the image intensity is given once more by

equation (17) with use of the polychromatic TCC instead

of the monochromatic TCC. Care must however be taken in

employing the polychromatic version of equation (17) due

to the underlying assumption of shift invariance required in

the definition of a transfer function. Particularly, whilst shift-

invariance may hold for each spectral component individually,

this in itself does not guarantee that the polychromatic

image will be shift invariant. Considering the basic imaging

equations it can be seen that polychromatic shift invariance

will not hold if the magnification of the imaging system is

strongly wavelength dependent [80]. Further dangers of using

polychromatic transfer functions, arising from the possibility

of non-uniqueness, have been highlighted in [86].

2.6. Surface topography measurements

Whilst surface topography measurements represent a class of

3D imaging measurements in a broad sense, and are hence

describable (under the correct conditions) by the framework

given thus far, they are a special class. Accordingly further

results may be expected to follow within this field of study.

This is indeed true, as can be seen upon a re-examination of

scattering from surfaces as is presented here.

Fundamentally when a surface is illuminated by a single

plane wave, a spectrum of output plane waves can result.

Surface scattering is therefore commonly formulated using

a scattering function S̃(m1; m2) which describes the relative

amplitude and phase between an input plane wave propagating

8
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Figure 3. Simplified geometry of surface measurement depicting an
incident plane wave with direction defined by (m1, n1) scattered to a
plane wave with direction (m2, n2).

in a direction defined by the direction cosinesm1 and one of the

output plane waves propagating in a direction defined by the

direction cosinesm2 [87] (see figure 3). If, however, the radius

of curvature at each point on the surface can be considered to

be much greater than the wavelength, then the surface can be

considered to be locally plane, such that a single input plane

wave gives rise to a single output plane wave dependent on

the tilt of the surface. Under these circumstances, it is logical

to change coordinate systems to m = m1 − m2, where it is

also noted thatm represents the spatial frequency components

of the surface. This is known as the Kirchoff approximation

[88]. Under this approximation, the scattering function can be

written in the form S̃(m). Such a replacement is also possible

if the surface height variations are small [87]. The image

amplitude following scattering from the surface can then be

written in the form

Ed(rs, r2) =
∫

h̃eff(m, r2)S̃(m) exp[2π irs · m] dm (43)

which should be compared with equation (13).

Provided that the surface is smooth at the optical scale

and there is negligible multiple scattering, the 3D object can

be replaced by an infinitely thin ‘foil’ like object placed at

the interface [89]. Indeed, using this model, it has been shown

that for a 1D perfectly conducting surface, illuminated by

s-polarized light, the scattering function can be written in the

form [88]

S̃(m, q) =
(

m2 + q2

2q

)∫
exp [−2π i(mx + qZ(x))] dx. (44)

This result was later extended to 2D surfaces [87] and reads

S̃(m) =
|m|2

2q

∫ ∫
exp [−2π i(mx + ny + qZ(x, y))] dx dy

=
|m|2

2q

∫
δ(z − Z(x, y)) exp [−2π im · r] dr

=
|m|2

2q
t̃(m), (45)

where from equation (45) it can be seen that the object

spectrum t̃(m) is the 3D Fourier transform of the surface

profile. The geometric pre-factor introduced when considering

surface scattering reduces to unity for low numerical aperture

systems. Equations (13), (43) and (45) show that for surface

measurements the effective CTF becomes

h̃eff−sur(m) =
|m|2

2q
h̃eff(m). (46)

Earlier expressions derived for coherent, incoherent, partially

coherent and interferometric imaging systems are all

dependent on the CTF h̃eff(m) when imaging 3D objects.

Given equation (46) these results are still applicable with

the replacement h̃eff(m) → h̃eff-sur(m) in the appropriate

formulae.

3. Measurement of 3D transfer functions

The first part of this report has focused on laying out the theory

of transfer functions in optical imaging systems. Formulations

of this nature were pursued with a view to calibration of

metrology systems. It has long been recognized that such

a calibration and characterization of measurement systems

can be obtained by measurement of either the 3D PSF or

the associated OTF [90, 91]. This has become increasingly

sought as measurement protocols havemoved away frommore

traditional parameters, such as surface roughness or form,

towards measuring the full power spectral density of a 3D

object or surface [92–95]. Accordingly, the latter portion of

this review turns attention to the measurement of the transfer

function of optical imaging and interferometric setups. Due

to the relationships expounded above between the 3D PSF

and the 3D OTF, direct measurement of the PSF can also be

considered as a measurement of the OTF in some (but not all)

cases.

Given the assortment of imaging setups possible,

distinction must be made as to which transfer function

is to be measured. For example, if a confocal reflection

microscope is used for surface profiling [96] calibration

requires measurement of the complex CTF, whilst for a

confocal interferometric setup the interference CTF must

instead be measured [76]. Alternatively, in a spatially

incoherent system, theOTF is required.Differentmeasurement

procedures must hence be pursued in each case and care

taken in selecting the appropriate acquisition and processing

technique.

To highlight this issue consider first the possible forms

of the imaging equations, expressed in terms of the relevant

transfer function, which are stated here for clarity. Specifically

for a spatially fully, partially and in-coherent setup the imaging

equations are

Icoh(rs) =
∣∣∣∣
∫

h̃(m)̃t(m) exp[2π irs · m] dm

∣∣∣∣
2

(47)

Ipc(rs) =
∫ ∫

H̃(m, m′ )̃t(m)̃t∗(m′)

× exp[2π irs · (m − m′)] dm dm′ (48)

9
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Iinc(rs) =
∫

H̃(m)T̃ (m) exp[2π irs · m] dm (49)

respectively where the separability of the TCC in the coherent

case has been emphasized. Supplementing these equations

with that of an interferometric setup, i.e.

Iint(rs) = 2ℜ
[∫

h̃(m)̃t(m) exp[2π irs · m] dm

]
(50)

yields the complete set of equations to be considered.

Following the discussion in section 2.5 it is noted that the

OTFs of equations (47)–(50) may be either monochromatic

or polychromatic as appropriate for the system under study.

Before existing literature on the measurement of the transfer

function is reviewed, it is important to mention that many

such works aim to measure only a 2D transfer function. Given

equation (11) (and its analogue for the other system geometries

under consideration) it is evident that all such techniques can

be employed for themeasurement of the 2D defocused transfer

function, by introducing a variable defocus of the test object

into the system, such that a 3D image stack can be acquired

to ultimately enable the reconstruction of the full 3D OTF.

Measurements of 2D transfer functions will hence also be

included within the following review.

3.1. Incoherent systems

Solution of the imaging equations for the transfer function is

simplest for an incoherent system and hence considered first.

In this case, equation (49), or equivalently equation (30), holds.

Solution for the OTF then quickly follows by taking the ratio

of a measured image spectrum obtained from a known object

with the spectrum of the object distribution, i.e.

H̃(m) = Ĩ(m)/T̃ (m). (51)

The majority of techniques to experimentally measure the

OTF were developed during the 1940s–1960s [30, 91], many

based on this approach. Knowledge of the form of the sample

object is however crucial to an accurate determination of the

OTF. Moreover, judicious choice of the sample object must

be made so as to avoid zeros in its spectrum, in turn implying

the transfer function cannot be determined over a complete

range of frequencies. Historically, a plethora of alternative

structures and standard targets have indeed been employed in

the measurement of the OTF each with their ownmerits. Many

works, however, only aim to measure the MTF. Whilst the

MTF by itself does not contain complete information about

the optical system, it is often sought if only a parameter

derived from the full image data, such as surface height, is

available instead of the image data itself [97], as may be true

for commercial systems. In this case, it is more appropriate to

say that it is the instrument transfer function which is sought;

however, there is no guarantee that intermediate processing

steps include solely linear operations as required for a transfer

function description to be valid. Alternatively, an implicit

assumption that the PSF is symmetric (and hence an even

function) is made, in turn yielding a purely real OTF. This

latter assumption must, however, be viewed with caution since

it will not hold in general, especially for an aberrated system.

Equation (29) encapsulates perhaps the most intuitive

method by which the OTF in an incoherent system can be

measured. In particular, if a point object is used as a test

object, the acquired image can be directly Fourier transformed

to give the complete complex OTF, from which the MTF and

PTF can easily be found. Equivalently this can be seen from

equation (51) since the 3D spectrum of an ideal point object

(mathematically represented by a Dirac delta function) is a

uniform, isotropic distribution, i.e. T̃ (m) = 1 for all m. True

sources, however, possess a finite size in turn introducing a

frequency dependence in the object spectrum (albeit a weak

dependence). If however r0 ≪ λ/4, then the object spectrum is

approximately uniform such that the source can be considered

effectively as a point [98]. It should nevertheless be noted

that small scatterers do not scatter isotropically and have

radii of curvature much smaller than the wavelength and thus

break the conditions of validity of both the Kirchoff and

Born approximation. Measurement of the PSF has however

received much attention, particularly due to the availability

of small fluorescent objects such as fluorescent microspheres

(beads), fluorescent molecules or quantum dots, that represent

effective point sources due to their size. 3D measurements of

the intensity PSF have hence been made by authors such as

Agard et al [99], Gibson and Lanni [100], and Goodwin [101].

Hiraoka et al similarly collect a series of 2D defocused images

of the intensity PSF from which they proceed to calculate the

OTF [102]. Protocols have further been developed to measure

the intensity PSF of a confocal fluorescence microscope

[103, 104]. Measurements obtained using CCDs are however

limited by pixel size, as suchRhodes et almeasure the intensity

PSF of a lens directly using a near field probe [105]. Given that

a point source is inherently spatially coherent any measured

amplitude PSF determined via coherent detection (see

section 3.2) can be used to find the intensity PSF (by taking the

modulus and squaring cf equations (27) and (28)) appropriate

to use of the imaging setup in an incoherent modality. In this

vein, Beverage et al use a Shack–Hartmann sensor to measure

the complex wavefront in the exit pupil of a 3D microscope

[106]. The associated intensity PSF is then given by the

modulus squared of the Fourier transform of the measured

field distribution.

PSFmeasurements, however, can suffer significantly from

low signal-to-noise ratios. Today rapid data acquisition permits

multiple measurements to be obtained and averaged, hence

improving signal to noise ratios. Furthermore, highly sensitive

detectors exist which can help mitigate this issue to some

extent; however, the use of a line object or knife edge

inherently increases the energy transmitted, and hence the

signal-to-noise ratio, by an order of magnitude [107]. The

image of a line object is known as the line spread function

(LSF), whilst that of an edge is the edge spread function

(ESF), with the former given by the derivative of the latter

[108–110]. In one dimension, the OTF is given by the 1D

inverse Fourier transform of the LSF, a fact exploited by

many authors [111–113]. However, to obtain a 2D coverage

of frequency space it becomes necessary to rotate the object,

so as to introduce an azimuthal dependence [112]. Algorithms

for direct determination of the OTF from the ESF have been
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Figure 4. (left) Siemens star target and (right) USAF 1951 resolution target.

explored in [108, 114] and are preferable over a line object

based method, since the latter suffers from the finite width of

the object, in a similar fashion to that discussed for a finite

sized point source above. It should be noted that modern

targets, such as the ISO 12233 target, still include knife-edge

type objects to enable OTF measurements via this method. A

comparison of OTF measurements using the edge technique

and interferometric methods is presented in [115], wherein it

is concluded that they perform comparably, albeit the edge

method can be less accurate at low frequencies. Whilst the

techniques listed above measure the 2D OTF, step like or

spherical objects, being inherently 3D in nature, allow for

more direct measurement of the 3D OTF [30, 116, 117] .

Given the physical meaning of the OTF, a further intuitive

choice of the test object is that of a 3D sinusoidal grating.

Since the spectrum of such an object ideally constitutes a

single spatial frequency, equation (51) implies that the image

spectrum directly yields the appropriate element of the OTF.

In the context of sine wave targets, it is common to find studies

in which only the MTF is measured. Specifically, instead of

calculating the Fourier transforms implied in equation (51), the

MTF is directly calculated by taking the ratio of themodulation

(or contrast), defined as

M =
Imax − Imin

Imax + Imin
, (52)

where Imax and Imin are themaximum andminimum intensities,

in the final image and object distribution, i.e. MTF =
Mimg/Mobj. Such a technique however is limited since only

a single spatial frequency can be probed for a single target.

Targets were hence quickly developed in which the spatial

frequency of the pattern varied spatially across the extent of the

object. The original sinewave tests of Selwyn [33] have already

been mentioned; however, this strategy was also pursued by

other authors [118, 119], and still forms the basis of existing

methods for more complicated systems [120, 121]. Fabrication

of accurate sine wave gratings can however pose technical

problems.Whilst in more recent years this has been overcome,

for example by using the interference pattern formed from

two (or more) plane waves to form a suitable grating [121] or

modern lithographic procedures, originally the idea developed

to employ square wave [107, 122], or even triangular [123]

test patterns due to the relative ease with which they could be

made. It should also be noted that such targets cover more of

the spatial frequency domain in a single image. More modern

targets include the Siemens star target [124], Ronchi rulings

and the USAF 1951 resolution target [125] (see figure 4).

A further class of 3D test object has been proposed,

namely that of (pseudo-) random gratings [126], which

has seen little attention until more recently [127–129].

Such a choice is motivated by the uniform power

spectrumpossessed by a pseudo-randomgrating. Furthermore,

such gratings can be generated so as to possess shift-

invariance, a property which has been shown to be

locally violated in systems in which the image is

sampled [130–132]. This technique furthermore improves

the accuracy over those based on LSF/ESF measurements

since high accuracy in these can only be achieved by

using very narrow slits, which compromises signal levels

[126]. The work detailed in [97, 133–138] similarly uses

pseudo-random gratings (made via a standard lithographic

process) as a test object, but here it is the MTF of the entire

system, including effects from signal processing, detector

response and environmental factors (as opposed to just the

image forming optics), that is being measured. Polychromatic

measurements of the MTF have also been made in [139,

140] by considering finite spectral bands, from which the

polychromatic transfer function is subsequently calculated or

directly measured [141, 142].

3.2. Coherent systems

Coherent systems (described by equation (47)) can be

calibrated by measurement of their CTF. Many parallels can

be drawn between the measurement of the CTF in a coherent

system and of an OTF in incoherent systems, albeit the

discussion must proceed in terms of complex field amplitude

instead of intensity, such that

h̃(m) = Ẽd(m)/̃t(m), (53)

where Ẽd(m) is the spectrum of the detected complex field

amplitude. Accordingly, an additional layer of difficulty is
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introduced since complete measurements of the field must

measure both field amplitude and phase. Whilst the former can

be found by taking the square root of an intensity image, the

latter requires use of, say, a wavefront sensor or interferometer.

Following the structure of section 3.1, consideration is

first given to the measurement of the amplitude PSF. To

maintain phase coherence between the illumination beam and

the collected scattered field, fluorescent sources can no longer

be used for such a measurement. A number of solutions have

been proposed in this vein, with Schrader et al, for example,

using 80 nm diameter colloidal gold particles immersed in

immersion oil [143] (although phase was not measured by the

authors). Cotte et al use a 75 nm diameter nano-hole created

via focused ion beammilling [144]. As with the measurements

of the intensity PSF, the finite size of these sources will play a

role in accurate determination of the OTF.

By far the most common method to measure the complex

field amplitude is via interferometry as was first proposed

within the context of OTF measurements by Hopkins [145]

(albeit within a partially coherent context). Selligson [146]

and Dandliker et al [147] have used a Mach–Zehnder

interferometer to measure the aberrations present in a lens

by mapping the phase and intensity PSFs in the focal region of

a lens. Similarly, Schrader and Hell [148], and Török and Kao

[149] used Tywman–Green interferometers, whilst Juškaitis

and Wilson [150] and Walford et al [151] employed a fibre

optic interferometer. Holographic measurements have also

recently been reported [144, 152].

Despite the prevalence of interferometric methods,

non-interferometric methods have been used for PSF

measurements. For example, Beverage et al have used

a Shack–Hartmann sensor placed at the exit pupil of a

microscope [106] from which the PSF can be found by a

Fourier transform. Intensity only measurements can also be

used if a phase retrieval algorithm is exploited [153, 154].

In this scenario, complexity of the optical setup is traded for

additional noise amplification arising from the increased post-

acquisition data processing.

Due to the difficulties of coherent detection in optical

setups, such measurements are not common in the literature.

That said both experimental and theoretical developments

are well established in acoustic imaging in which the image

formation process is analogous to that of optical systems

[155, 156]. Within this domain both line and step functions

have been used to determine the CTF of the imaging system

[155, 157]. A theoretical study of spherical objects in a

scanning confocal reflection acoustic microscope has been

presented in [158, 159], whilst experimental measurements

of the 2D defocused CTF are discussed in [157, 160, 161]. In

these studies, it was shown that a non-planar scan along the

surface of a large steel sphere gives the in-focus CTF, whilst

with small shifts of the focal position similar arc-scans give the

2D defocused CTF. Accordingly, by forming 3D images near

the top of the sphere the 3D CTF can be found. If considering

measurement of the PTF only, then phase steps have also been

shown to be suitable [162] for such measurements.

3.3. Partially coherent systems

Given that in partially coherent systems transmission of

spatial frequencies must be described pairwise via a TCC

(see equation (48)), measurement of such transmission

characteristics becomes more involved. An approach based

on algebraic division in the spatial frequency domain, as was

adopted for coherent and incoherent systems alike, can no

longer be pursued, since calculating the image spectrum via

a Fourier transform yields only equal frequency values of the

TCC, i.e H̃(m, m). For a conventional system, it was shown

earlier that the TCC is given by the autocorrelation of the

pupil function (see equation (20)). Measurement of such an

autocorrelation integral can be performed by the inspection

of the interference patterns arising from two identical but

mutually shifted versions of the field. The lateral shift is

commonly referred to as a shear of the field, such that the

measurement setup is known as a shearing interferometer. Such

an interferometer for the determination of the autocorrelation

of a field for OTF measurements was suggested by Hopkins

[145] and first implemented in a Michelson-type geometry

by Baker [163]. Variants of lateral shearing interferometers

of this nature have since been proposed [164–170]. Setups in

which rotating glass plates [171], double gratings [172, 173]

and correlated partial diffusers [174] introduce the necessary

shear between fields have also been developed. A scanning

setup has also been proposed in [175].

3.4. Interferometric systems

As with partially coherent systems, measurement of the

transfer function in interferometric systems requires a little

more thought. Inspection of equation (50) highlights that

once more a simple Fourier analysis does not directly yield

the transfer function. The reason for this complication is that

both the transfer function h̃(m) and object spectrum t̃(m) can

be complex. For the object spectrum, this will particularly be

the case if the object exhibits any absorption, as is particularly

the case withmetallic materials. Any phase aberrations present

in either the reference or object arm of the interferometer will

likewise give rise to imaginary parts of the PSF and hence the

transfer function.

Many commercial interferometer setups furthermore

include a ground glass diffuser so as to reduce coherent noise,

specifically speckle, that can arise from stray reflections and

scattering in the optics. Specifically the interference pattern is

imaged onto a rotating diffuser, which is subsequently relayed

by a zoom lens onto a detector. In this way, the interference

image acts as an incoherent source for the relay optics, adding

an additional step in the image formation process described by

equation (49). This step shall, however, be neglected here for

simplicity.

To establish how the transfer function of an

interferometric imaging system can be determined, it is first

observed that equation (50) can be rewritten in the form

Iint(rs) = 2

∫
|̃h(m′)||̃t(m′)| cos[2πrs · m′ + 8h(m

′)

+ 8t (m
′)] dm′, (54)
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where 8h(m) is the PTF and 8t (m) is the phase angle of the

object spectrum. Taking the Fourier transform yields

Ĩint(m) =
∫

|̃h(m′)||̃t(m′)|

× {exp[i8h(m
′) + i8t (m

′)]δ(m′ − m)]

+ exp[i8h(m
′) + i8t (m

′)]δ(m′ + m)} dm′ (55)

= h̃(m)̃t(m) + h̃∗(−m)̃t∗(−m). (56)

Due to the spatial frequency cutoffs of the transfer function

[176, 177], equation (56) describes two separated copies of

the product h̃(m)̃t(m) (and its conjugate) in frequency space,

such that one can be filtered as part of post-processing. The

filtered spectrum is thus of the form Ĩint-fil(m) = h̃(m)̃t(m)

such that the interference CTF is given by

h̃(m) = Ĩint-fil(m)/̃t(m). (57)

Indeed, such an approach has been adopted in [178, 179]

upon acquisition of the PSF of the system using a coherence

scanning interferometer. The MTF of an OCT system has

also been reported in [180, 181], as determined through

measurements of nanoparticles. Grid patterns have also been

used to establish the PTF of a phase-shifting interferometer

[182]. Novak et al have used both phase steps and sine wave

structures for characterizing a Fizeau interferometer [121].

Yashchuk et al have shown that their proposed technique of

using random gratings can be extended to measuring the MTF

of interferometric systems, such as a Fizeau interferometer

[137, 138]. An OTFmeasurement scheme, based on a shearing

interferometer, using a white light source has also been

proposed in [172] and is hence also suitable for study of white

light interferometers or other polychromatic techniques.

4. Discussion

OTF theory covers an extensive array of optical systems

ranging from spatially coherent to incoherent systems,

monochromatic to white light sources and interferometric

setups, yet it is the broad applicability and simplicity of

the underlying principles which account for its success

and prominence in the literature and beyond. Theoretical

developments in this vein date back to before the invention

of the laser, perhaps justifying the greater extent to

which experimental studies have centered on partially

coherent or incoherent setups. As optical technology has

progressed, however, so has transfer function theory, with

analytic expressions now available for many idealized optical

configurations. Natural progression to the description of fully

3D systems is also clearly evident in the literature. Many

practical systems are however far from ideal, yet despite

this experimental measurement of transfer functions has seen

slower development, especially for 3D imaging arrangements.

Arguably such reticence likely follows from the greater

ease with which alternative performance metrics, such as

resolution, can be determined, e.g. by means of resolution

targets. For many applications system characterization by

such incomplete means has proved adequate, yet now with

the movement towards formulation of optical metrological

standards, full system knowledge is required hence motivating

accurate measurement of OTFs. Existing methods of

performing OTF measurements have been reviewed in the

latter portions of this text, however the question as to

which method is preferred remains open. Predominantly, OTF

measurements all follow the same principle, namely measure

the 3D ‘image’ of an object with an accurately known spectrum

(i.e. shape), from which the image spectrum and consequently

the transfer function can be computed.

The question of optimality is not a trivial question to

answer; however, the key principles of a goodmeasurement are

clearly identifiable. In particular, a good measurement should:

(i) provide information across the full transmission

bandwidth of the optical setup,

(ii) be well-posed, i.e. contain no zeros in the object spectrum,

(iii) be repeatable and robust,

(iv) be simple to implement, so as to permit and promote easy

uptake by industrial users,

(v) require objects which can practically (and cheaply) be

manufactured.

Given requirement (i), techniques which employ multiple

targets, e.g. sine wave targets or line gratings can immediately

be excluded since these constitute a discrete set of object

frequencies and hence the full system bandwidth is not covered

and information is consequently lost. Targets such as a Siemens

stars are also not suitable, since these probe spatial frequencies

in one direction only (in this case the azimuthal direction) with

no regard to variations in the radial or axial direction. Caremust

hence be taken to ensure variations exist in all three dimensions

of any test object. Requirement (ii) also directly precludes a

number of targets. For example a square pillar, if chosen too

large, will have zero crossings in its 3D spectrum which lie

within the spatial bandwidth of the measuring system. Other

examples of objectswith zero crossingsmight include grooves.

Such zeros inherently imply that no information regarding the

value of the transfer function at the associated frequency is

contained within the experimental data and hence solution is

ill-posed.

Robustness (requirement (iii)) can be expressed in terms

of the susceptibility of a measurement of a transfer function

to noise. The first step to minimize the degrading effects

of noise is to maximize the signal to noise ratio, by

maximizing light throughput in the system. Point objects

are undesirable for this reason (as well as the associated

difficulty in their manufacture). Assuming experimental

conditions are maintained (i.e. noise levels upon detection

are constant) it is the post-processing of the raw image

stack which will dominate overall noise properties on the

inferred transfer function. Consider, for example, determining

the OTF or CTF via equations (51) or (53) in which the

experimental image is divided by the known object spectrum

(an intuitive and mathematically simple procedure as may be

preferred as per requirement (iv)). Any noise present on the

image is amplified via division, with the frequencies which

are present only weakly in the object suffering the worse noise

amplification. A step artefact for example has a spectrum in

which the amplitude falls off at higher frequencies, such that
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the inferred transfer function would be corrupted by noise to a

greater extent at higher frequencies. At best a uniform object

spectrum is therefore chosen, hence suggesting the use of large

spherical objects or random arrays. Of these it is arguably the

former which is practically easier to manufacture (requirement

(v)) within the tolerances demanded for industrial standards,

however this has still to be realized in practice.
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[62] Urbaćzyk W 1982 Optical imaging in polarised light Optik
63 25–35
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